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A B S T R A C T

Energy audits are an important part of reducing energy usage, costs, and carbon emissions, but there have been
discrepancies in the quality of audits depending upon the auditor, which can negatively affect the impacts and
credibility of the energy assessment. In this paper, historical energy auditing data from a U.S. Department
of Energy sponsored research program was gathered and analyzed with a machine-learning algorithm to
predict demand savings from a compressed air system assessment recommendation in industrial manufacturing
facilities. Different energy auditors calculate savings for repairing leaks in compressed air systems in various
ways, so the energy demand savings have been calculated differently throughout the historical assessment
recommendations. Machine learning models are utilized in order to enhance the accuracy of the existing
practice and reduce variations resulting from the abovementioned discrepancies. A large set of historical
assessment recommendation data was used to train five unique machine learning models. Four base learner
models and one metalearner model were devised and compared. Results showed that the distributed random
forest model best predicted compressed air energy demand savings against the new scenarios within an error
of 17%. This indicates that the distributed random forest model can more accurately quantify savings from
repairing leaks in compressed air systems. In addition, the results from this study provide insight into the
important factors contributing to leaks in the compressed air systems and why it is crucial to repair those
leaks regularly to save money and energy while decreasing emissions.

1. Introduction

Improving energy efficiency is a common concern among the world,
especially manufacturers. As climate change continues to worsen, it is
more important than ever to reduce energy consumption and decrease
emissions (Zaidi et al., 2021; Mungai et al., 2022). Industrial energy ac-
counts about 30 percent of total world energy consumption (Choi et al.,
2018a). Energy audits are an important first step in reducing industries’
energy usage by analyzing energy consumption and recommending
more energy-efficient practices (Vivek Jadhav et al., 2017; Johansson
et al., 2022). Energy audits optimize energy usage without affecting the
facility’s output, productivity, or comfort (Gokul et al., 2017; Errigo
et al., 2022). Historically, industrial energy provided opportunity to
save energy consumption around 13% under the U.S. Department of
Energy’s Industrial Assessment Center program (Kapp et al., 2023).
Though energy audits are crucial in reducing energy consumption and
emissions, issues can arise in the lack of methodology or training of au-
ditors (Shen et al., 2012; Kapp et al., 2022). Low-quality energy audits
often result from unstandardized audit procedures and recommenda-
tions, which negatively impact the adoption rate of energy efficiency
recommendations (Tobias Fleiter and Ravivanpong, 2012; Carlander
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and Thollander, 2022). These issues can lead to discrepancies and er-
rors in energy audits. Studies have shown that standardized assessment
recommendations (ARs) assisted with the machine learning approach
could assist in developing effective and inexpensive auditing methods
since energy audits tend to be costly and time-consuming (Marasco and
Kontokosta, 2016; Glick et al., 2021; Goss and King, 2020).

Machine learning utilizes data-driven models focusing on the re-
lationships in the raw data and variables instead of equations and
calculations (Montáns et al., 2019). Auditing organizations and manu-
facturing facilities have significant historical energy audit data that can
be used in the machine learning model and helps identify energy and
cost savings more accurately. Manufacturers typically record energy
usage data for observational purposes, not for process improvement.
However, this underutilized valuable data can be employed to discover
and identify the most important control variables in manufacturing
processes (Sadati et al., 2018).

This paper utilized the historical data from the University of Dayton
Industrial Assessment Center, that has performed over 1050 energy
audits on manufacturers over the past forty years (University of Dayton
Industrial Assessment Center, 2022). This paper analyzes the data from
the compressed air system (CAS) of all the energy systems focused on
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during these audits. Specifically, it looks at the recommendation of
repairing leaks in CASs. Compressed air usage accounts for about 10%
of total industrial energy usage (Saidur et al., 2010). Leaks in CASs
can waste as much as 20 to 50% of compressed air output (Scaron
et al., 2011; Kaya et al., 2002). New cases are introduced and developed
to show the efficacy of the methodology developed in this work. By
utilizing machine learning methodology for CASs in manufacturing
facilities, the savings for repairing industrial compressed air leaks can
be more accurately quantified, and the most important variables can
be identified.

CAS is highly energy intensive and one of the more expensive equip-
ment in industrial facilities (Dindorf, 2012). CAS is equipment that is
often inefficiently utilized in industrial applications such as equipment
cooling, blow-off, and liquid agitation, among other misuses (Nagarkar
and Pal, 2021). Some common appropriate uses of compressed air
include controls, actuators, air tools, and vacuum (McLaughlin et al.,
2021). With the wide range of industrial uses, leaks in CASs are
unavoidable. They can contribute to a significant amount of energy
wasted, especially through joints, hoses, and other connections in the
compressed air lines. Though large compressed air leaks can be heard,
most leaks are small and difficult to find, which requires leak detection
equipment like an ultrasound or an infrared detector to identify and
help quantify the leaks (Dudić et al., 2012). Necessary information for
quantifying leaks and their potential savings in CASs can be obtained
through energy audits (Paucar et al., 2017).

Energy auditors require various information about the compressor
and plant operations to accurately calculate savings from repairing
leaks (Choi et al., 2018b). Compressors can have different flow con-
trols, which influence how much power they are using depending on
how loaded the compressors are. The common types of flow control
are start/stop, load/unload, inlet-modulation, auto-dual, and variable
speed drive (Challent, 2002). Though all of these modes can be bene-
ficial in various circumstances, Variable speed drive (VSD) is typically
recommended in manufacturers due to its capability. Variable speed
drive (VSD) controls allow the motor to vary its speed depending upon
the compressed air demand (Kissock, 2005; Schmidt and Kissock, 2003;
Shinde and Jadhav, 2017; Mousavi et al., 2014). The other types of
flow do not have such a wide range of variability so the compressors
in typical manufacturers would be unable to save the same amount of
energy.

Machine learning could help calculate savings from repairing leaks
by utilizing historical industrial energy consumption data to estimate
energy and cost savings more accurately with reducing the carbon
dioxide emission (Naji et al., 2021). There are three main types of
machine learning: supervised, unsupervised, and reinforcement learn-
ing (Deepika et al., 2018). This paper will focus on supervised learning.
Supervised learning uses historical data to predict the desired out-
puts, so the model learns through examples (Alzubi et al., 2018). The
gathered data for this research is more suited to supervised learning
because the data spans the past forty years and already has input and
output data labeled which the supervised model can learn and apply to
unlabeled future datasets.

Machine learning is frequently used in manufacturing industries to
manage and process data from the facility and products to support
manufacturing decisions, estimate product costs, and improve manufac-
turing facility operations (Sharp et al., 2018). It was found that utilizing
machine learning capabilities reduced error and uncertainty by 50% in
measurement and verification applications in the industry (Gallagher
et al., 2018). Similarly, smart manufacturing and predictive manu-
facturing combine machine learning, big data, artificial intelligence,
and advanced technology to optimize efficiency and productivity while
reducing costs and production time (Haricha et al., 2021; Nikolic
et al., 2017). Another study was able to accurately predict maintenance
system failures using a random forest machine learning model with
a high R-squared (R2) value based on the real-time data from the
production line equipment (Ayvaz and K, 2021).

Machine learning techniques have been frequently used in manu-
facturing facilities (Shook and Choi, 2022) and some CASs. Previous
research has shown how intelligent systems can decrease energy usage
in CASs by using past data to anticipate future needs (Thabet et al.,
2021). An ensemble learning framework, known as stochastic gradient
boosting, was developed to model the properties of compressed air,
which would minimize laboratory testing to acquire these specific prop-
erties (Dehaghani et al., 2022). Bendetti et al. created maturity models
to optimize efficiency in compressed air systems using autonomous
assessment tools to evaluate the system from potential managerial
opportunities instead of focusing on technological concerns (Benedetti
et al., 2019). It has been suggested that deep reinforced learning and
recurrent neural networks could be possible approaches to improve
overall compressed air system efficiencies (Thabet et al., 2020). One
concern with utilizing these models is that they use historical data, so
if there are any severe changes to the compressed air system or technol-
ogy, the models would no longer be accurate (Metthee, 2021). These
examples from the literature indicate there has been some research
into utilizing machine learning in compressed air systems and lay the
groundwork for further research.

Although a large amount of research has been done focusing on
machine learning in manufacturers, there is little research on how en-
ergy auditors can adopt and utilize similar machine learning practices
to perform better audits based on historical data. This article explores
how to estimate energy and cost savings from compressed air leaks
in industrial compressed air systems using various machine learning
techniques based on manufacturers’ past audit data.

2. Methodology

The overall research steps are shown in Fig. 1. The first step is
to review the energy auditing process. This process has three main
steps: a pre-assessment, a facility tour, and a post-assessment. Specific
assessment recommendations (ARs) are suggested during each energy
audit to decrease energy demand based on data and calculations. In our
40 years’ historical data, there were three unique ways of estimating the
compressed air energy demand savings by repairing leaks. We classified
all data based on these three different methodologies. Secondly, the
data from all compressed air leak recommendations were collected and
organized prior to creating models using machine learning algorithms.
Thirdly, five specific models were developed from the data utilizing
various machine learning techniques. These models vary in strengths
to capture different patterns in the data. Finally, results from several
models compared to identify the highest performing model that is to
be used in estimating savings from repairing leaks in CASs. Three
validation metrics used to compare the models include the R-squared
values, the mean absolute error values, and the root mean square error
values. Three different scenarios were also used against the five models
to determine which models were able to predict the energy demand
savings more accurately. More details of each step are described in this
section.

3. Case study

3.1. Industrial energy/resource auditing

The research framework starts with the data collection from the in-
dustrial energy audits performed by a U.S. Department of Energy spon-
sored Industrial Assessment Center program. UD-IAC has performed
energy and resource audits (Choi et al., 2019) for small and medium en-
terprises in the Ohio region for forty years. Every audit had three main
parts: the baseline analysis, the audit, and the final report (University of
Dayton Industrial Assessment Center, 2022). The baseline analysis used
the specific facility’s utility, production, and weather data to break
down their utility charges and identify how much of their energy
consumption could be attributed to weather or production dependency.
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Fig. 1. Process framework for creating machine learning models to predict energy demand savings from repairing leaks in CASs.

This initial analysis also includes gathering the facility’s general data
like the products, operating hours, shift arrangement, number of em-
ployees, floor area, and the annual utility usage. This information helps
the energy auditors understand the utility rate structures and how the
facility operates throughout the day, week, and year before attending
the audit. During the audit, the energy auditors tour the facility and
gather further information about the equipment and practices through-
out the plant. Based on the information gathered throughout the tour,
the auditors will recommend energy-efficient practices that the facility
could implement to save energy and money. The last stage of the
audit process is the final report. The final report contains all details
from the audit, including the baseline analysis, recommendations, and
potential implementation strategies. The specific recommendations de-
scribe what is being proposed, show the calculations for the cost and
emission savings, and discuss implementation cost and internal rate of
return. The final report summarizes all the recommendations clearly
and concisely for the facility’s benefit.

3.1.1. Example of CAS analysis
Repairing leaks in the CAS is one of the most common recommen-

dations for facilities with compressed air. Compressed air is expensive
and energy-intensive, so if leaks are not being regularly checked and
repaired, then leaks could contribute to a large amount of the facility’s
compressed air consumption, as discussed in the background section.

This section offers one example of the compressed system analysis,
which mainly focuses on finding total compressed output, economic
savings, and CO2 savings. Fig. 2 shows the current compressed air
system in a plant the audit team visited. It consisted of a 150-hp com-
pressor (CAS 1), a 100-hp compressor (CAS 2) and a 75-hp compressor
(CAS 3). The 100-hp compressor was located in a separate building,
while the other two were in the boiler room. All compressors operate
continuously throughout the year. These air compressors were all under
modulation control with auto shut-off. Each of the 100-hp and 150-
hp compressors was served by a heated desiccant dryer. The 75-hp
compressor was served by an unheated desiccant dryer. The current
operating set point was 105 psig.

The audit team logged the current draw of all three compressors.
According to management, the voltage to the air compressors is 480
V. Compressor was monitored continuously using a data logger. The
current draw was measured at the main electrical feed to the air
compressor. The power factor is assumed to be 0.86. Assuming this
current draw profile represents typical manufacturing conditions, the

Table 1
Compressed air systems information and calculated parameters.

Compressor information CAS 1 CAS 2 CAS 3

Horsepower (hp) 150 100 75
Power Factor* 0.86 0.86 0.86
Voltage (V) 480 480 480
Average Current Draw (Amps) 206.6 120.9 82.6
Fan Size (hp) 5 5 5
𝑃avg (kW) 129.2 74.0 49.4
𝑃max (kW) 120.2 78.7 58.0
Fraction Power (FP) 1.1 0.9 0.9

average power when operating the air compressor can be calculated by
Eq. (1) (Alkadi, 2011).

𝑃𝑎𝑣𝑔 = 𝑉 𝑜𝑙𝑡𝑎𝑔𝑒 (V) × 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (A) ×
√

𝑃ℎ𝑎𝑠𝑒 × 𝑃𝐹
( kW
kVA

)

× 1 kW
1, 000W

− 𝑃𝑓𝑎𝑛 (1)

Based on the size of the air compressors, we estimated the fan motors
to be 5 hp. The average fraction power of the air compressor, FP, can
be calculated by Eq. (2). Table 1 shows the parameters associated with
the three CAS.

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑃 𝑜𝑤𝑒𝑟 (𝐹𝑃 ) =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃 𝑜𝑤𝑒𝑟 𝐷𝑟𝑎𝑤
𝑀𝑎𝑥.𝑃 𝑜𝑤𝑒𝑟 𝐷𝑟𝑎𝑤

(2)

The fraction capacity can be found in Eq. (3).

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐹𝐶) =

(

𝐹𝑃 − 𝐹𝑃0
)

(

1 − 𝐹𝑃0
) (3)

As seen in Fig. 3, modulating the intake air is one of the least efficient
control strategies for an air compressor. Modulation compressors are
estimated to be 0.70 fraction power at zero fraction capacity.

Typical compressed air output from older rotary screw compressors
is about 4.2 scfm/hp. Therefore, the average compressed air output for
the air compressor can be solved with Eq. (4) (Abels and Kissock, 2011).

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐴𝑖𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 (𝐶) = 4.2 scfm
hp

×
1 hp

0.746 kW
× 𝑃𝑚𝑎𝑥 × 𝐹𝐶 (4)

Table 2 shows the calculated values, and the total average compressed
air output of the CAS was 1200 scfm.

3.1.2. CAS leak energy efficiency recommendation example
This section shows one example of calculating savings from CAS

by fixing the leaking. As shown in the previous section, the average
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Fig. 2. Schematic of compressed air systems in a facility.

Fig. 3. General power/output relationship by CAS control type.

Table 2
Parameters utilized for calculating the average compressed air output of each CAS.

Compressor information CAS 1 CAS 2 CAS 3

Fraction Power at No Load (FP0) 0.7 0.7 0.7
Average Fraction Power (FP) 1.07 0.94 0.85
Fraction Capacity (FC) 125% 80% 51%
𝑃max (kW) 120.2 78.7 58.0
Avg. Compressed Air Output (scfm) 845.4 355.0 165.5

compressed air consumption for CAS 1 was found to be 845 scfm and
355 scfm for CAS 2, and 165 scfm for CAS 3. Leaks in the compressed
air system increase the load on the air compressors resulting in excess
energy consumption. According to the US Department of Energy, leaks
typically comprise 20%–30% of the total compressed air load in plants
without maintenance programs. According to management, the facility
process calls for about 95 psig compressed air, and the air compressors
are set at 105 psig to overcome distribution loss. When the audit was
performed, the facility already had an ultrasonic leak detector, which

was not frequently used. It can greatly aid in detecting compressed
air leaks. An effective way to minimize compressed air leaks is to
establish a bi-weekly or monthly preventative maintenance program to
identify and fix compressed air leaks with the detector. Therefore, we
recommended instituting a monthly leak check program to identify and
repair compressed air leaks. Table 3 shows one example of calculating
the compressed air savings for CAS 1.

The same calculation was performed for two other compressors
(i.e., CAS 2 and CAS3). Table 4 shows total cost savings and CO2
emission savings for three compressors.

We estimated that it would take about an hour per month to identify
and fix leaks in the compressed air system at a labor cost of $50/hr.
Therefore, the annual labor cost would be about $600/yr. The net total
cost savings would be about $3736/yr–$600/yr = $3136. Since there
is already an ultrasonic leak detector used in the facility, there would
not be any implementation cost. Simple payback would be immediate.

3.1.3. Variations in calculating the demand savings from the fix leak
recommendation

Throughout the historical data, we found that the calculations for
repairing leaks have differed depending upon the audit and auditor.
There have been three main methods for calculating savings for repair-
ing leaks recommendation. There is no reason why different methods
have been used, except different auditors may prefer one method
over another. Also, the methods require different input information,
which may influence which method is used if there is no access to
the necessary information. Common input variables for these methods
include compressed air reduction, electricity savings, fraction power at
no production, and carbon dioxide emission savings. Compressed air
reduction refers to the amount of compressed air in standard cubic
feet per minute that could be reduced for a specific facility if they
implemented a program to repair leaks.

As shown in Eq. (5), Compressed air reduction can be calculated as a
product of average compressed air consumption, percent of compressed
air consumption contributed to leaks, and the realistic percentage of
leaks that could be regularly fixed.

𝐶𝐴𝑅 = (𝐶𝑎𝑣𝑔) × (𝑃𝐿) × (𝑃𝐶𝐴𝑅) (5)
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Table 3
Technical information of CAS 1 and facility for savings calculations.

Term Value Units

Average Compressed Air Consumption (𝐶avg) 845 scfm
Percentage of total due to leaks (PL) 20% –
Nominal Compressed Air Output (CAO) 4.2 scfm/hp
Fraction Power at No Production (FP0) 70% –
Motor Efficiency (Em) 90% –
Percentage Compressed Air Leaks Reduction (PCAR) 50% –
Average Operating Hours per Year (HPY) 8,760 h/year
Electricity Demand Cost (CD) $16.11 /kW
Electricity Energy Cost (CE) $0.0307 /kWh
Electrical Utility Carbon Intensity Factor (CIF) 1.56 lb-CO2/kWh
Compressed Air due to Leaks (CAL) = 𝐶avg × PL 169.0 scfm
Compressed Air Reduction (CAR) = CAL × PCAR 84.5 scfm
Demand Savings (DS) = (CAR/CAO × [0.746 kW/hp] × (1−FP0)/Em 5.0 kW
Electricity Savings (ES) = DS × HPY 43,826 kWh/year
Demand Cost Savings (DCS) = DS × CD × [12 months/year] $967 /year
Electricity Cost Savings (ECS) = ES × CE $1,345 /year
CO2 Emission Savings (CES) = ES × CIF/[2,205 lb/tonne] 31 tonnes

Total cost savings (TCS) = DCS + ECS $2,313 /year

Table 4
Total economic and environmental savings from all three CAS.

Term Value Units

Demand Savings (DS) 8.1 kW
Electricity Savings (ES) 70,795 kWh/year
Demand Cost Savings (DCS) = DS × CD × [12 months/year] $1,562 /year
Electricity Cost Savings (ECS) = ES × CE $2,173 /year
CO2 Emission Savings (CES) = ES × CIF/[2,205 lb/tonne] 50 tonnes
Total cost savings (TCS) = DCS + ECS $3,736 /year

where CAR is the amount of compressed air reduced in standard cubic
feet per minute, 𝐶𝑎𝑣𝑔 is the average compressed air consumption, PL is
the estimated percent of leaks, and PCAR is the realistic percent of leaks
that could be regularly repaired. 𝐶𝑎𝑣𝑔 and PL can be retrieved from
data loggers if applicable, or else plant personnel are able to estimate
the values. Eq. (6) calculates the electricity savings from the product of
energy demand savings and annual operation hours.

𝐸𝑆 = (𝐷𝑆) × (𝐻𝑃𝑌 ) (6)

where ES is the total electricity savings, DS is the energy demand
savings in kilowatts, and HPY is the annual operating hours. Eq. (7)
calculates the carbon dioxide emission savings from the electricity sav-
ings utilizing a carbon intensity factor and pound-to-tonne conversion
factor.

𝐶𝐸𝑆 = (𝐸𝑆) × (𝐶𝐼𝐹 ) ∕ [2, 205 lb∕tonne] (7)

where CES is the carbon dioxide emission savings, ES is the electricity
savings, and CIF is the carbon intensity factor. In the U.S. Midwest,
we typically use 1.95 pounds of CO2 per kilowatt hour (eGrid, 2016).
Compressor flow controls utilize varying degrees of power at differing
loads. Compressor fraction power is important when calculating savings
in CASs and understanding a facility’s compressed air consumption.
Eq. (8) represents a generalized linear relationship between associated
engineering parameters (Kissock, 2005; Murphy and Kelly Kissock,
2015).

𝐹𝑃 = (𝐹𝑃0) + (1 − 𝐹𝑃0) × 𝐹𝐶 (8)

where 𝐹𝑃 is full-load power, 𝐹𝐶 is fraction rated capacity and 𝐹𝑃0 is
fraction power at no production which can vary from zero to one with
start/stop controls at zero, followed by VSD at about 0.1, load/unload
at about 0.5, and modulation at 0.75 (Murphy and Kelly Kissock, 2015).

The first type of estimating the electricity demand savings is shown
in Eq. (9) (Schmidt et al., 2005). This was the most common calculation
methodology found in our historical data and the one used in the case
study shown in the previous section.

𝐷𝑆 = ((𝐶𝐴𝑅∕𝐶𝐴𝑂) × [0.746 kW∕hp]) × (1 − 𝐹𝑃 0) (9)

where, CAO is the nominal compressed air output. CAO and 𝐹𝑃 0 can
be found on the compressor’s data sheets

The second most frequently used type for estimating the com-
pressed electricity demand savings from leak detection is shown in
Eqs. (10)–(12) (Schmidt and Kissock, 2003).

𝑅𝐹𝐶 = (𝐶𝑎𝑣𝑔 − 𝐶𝐴𝑅)∕(𝐶𝑎𝑣𝑔∕𝐴𝐹𝐶) (10)

𝑅𝐹𝑃 = 𝑅𝐹𝐶 × (1 − 𝐹𝑃 0) + 𝐹𝑃 0 (11)

𝐷𝑆 = 𝑀𝐶𝑃𝐷 × (𝐴𝐹𝑃 − 𝑅𝐹𝑃 ) (12)

where, RFC is the reduced fraction capacity of the compressor, AFC
is the average fraction power which can be calculated from the data
loggers, RFP is the reduced fraction power, and MCPD is the maximum
compressor power draw which can also be calculated from the data
loggers or retrieved from the compressor’s data sheets, AFP is the
average fraction power.

The last type to calculate the compressed air electricity demand
savings utilizes the voltage and amperage of the compressor, as shown
in Eq. (13) (Schmidt and Kissock, 2004). This method is appropriate
if the compressors can be turned off when there is no production
and leaks are eliminated. Often, compressors run during hours of non-
production due to leaks in the system. If the non-production amperage
of the compressor was obtained through data loggers at the facility,
then potential savings can be estimated using the voltage, amperage,
power factor, efficiency, and annual operating hours. This method has
not been frequently used, though.

𝐷𝑆 = 𝑉 × 𝐴 × 𝑠𝑞𝑟𝑡(3) × (𝑃𝐶𝐴𝑅∕1000) (13)

where V is the voltage needed for the compressor, A is the amperage of
the compressor during non-production hours. The voltage and amper-
age can be obtained from the compressor nameplate and data logger.
Table 5 shows the summary of three different ways of calculating the
electricity demand savings. Other calculations such as CAR, ES, CES are
sam.
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Table 5
Summary of three different Compressed Air Demand Saving.

Term Variable Calculation Units

Compressed Air Reduction CAR 𝐶avg × PL × PCAR scfm
Demand Savings (Type I) DS (CAR/CAO × [0.746 kW/hp] × (1−FP0) kW
Demand Savings (Type II) DS MCPD × (AFP – RFP) kW
Demand Savings (Type III) DS V × A × sqrt(3) × PCAR/1000 kW
Electricity Savings ES DS × HPY kWh/year
CO2 Emission Savings CES ES × CIF/[2,205 lb/tonne] tonnes

Fig. 4. Dataflow management steps for the data pre-processing.

Table 6
Input data and description.

Category Variables

Operating parameters

Employed
Average compressed air consumption
Percent of leaks
Annual operating hours

Economic/environmental
Type of industry/production
Carbon dioxide emission
Carbon intensity factor

Equipment parameters

Full CAS load power
Fraction rated capacity
Fraction power at no production
Nominal compressed air output
Reduced fraction capacity of compressor
Average fraction power

Target variable Electrical Energy Demand

3.2. Data pre-processing

After the data was collected, the data needed to be cleaned and
pre-processed before creating a supervised machine learning model
from the data. Fig. 4 shows the dataflow management utilized for the
pre-processing step.

The data is made of numeric input variables and a response vari-
able. Table 6 lists the variables used in the different ML algorithm.
There are three categories of data that contribute to the prediction.
The operating parameters provide insight into how much energy is
consumed based on the amount of time that the facility is in use. More
employees, larger compressed air consumption, percentage leaks, and
longer occupied hours contribute to increased energy usage. Economic
and environmental parameters are indicative of production energy
usage and associated carbon dioxide emissions. The third category deals
with major process equipment—compressed air power, output that
provide large and unique independent loads. These parameters are of
particular interest because they are unique to manufacturing facilities
and compressed air systems, making them essential to training models
that accurately capture compressed air energy demand.

Supervised machine learning models learn patterns and functions
from the input data and response variable. By observing and identifying

how the variables in the data interact and influence each other, the
model attempts to learn correlations within the data. After creating the
connections between variables, the model can utilize the historical and
the new input data to predict the response variable output. Recommen-
dations where information was missing, were removed if the necessary
information was unable to be found. Also, scatter plots were created
between some variables to identify if there were any major outliers.
Some outliers were found, but after investigation, it was discovered
that values were mistyped in those instances. The values were therefore
corrected before other pre-processing could continue.

The next pre-processing step was creating a correlation matrix from
the data. At this point in the process, there was data from about 170
ARs for repairing leaks in CASs. Each recommendation was from a
unique facility with different general facility data and specific com-
pressor data. The correlation matrix was created to identify the highly
correlated features. Multiple highly correlated features could cause
unnecessary complexity and errors in the algorithm.

For this reason, a correlation matrix was created, and highly cor-
related features were removed. Fig. 5 shows a correlation chart. The
vertical axis on the right side of the figure depicts varying colors
from dark red to dark blue. The dark blue indicates a high positive
correlation between the variables, while the dark red indicates a high
negative correlation. The lighter colors are closer to zero and indicate
little correlation. If two features are highly correlated, then one of the
features is removed because they have about the same impact on the
data. Highly correlated features were identified with a correlation value
of .90 or higher. For example, the compressor horsepower and average
compressed air consumption have a correlation of 0.8, while fraction
power at no production has a negative 0.2 correlation with kilowatt
savings.

3.3. Machine learning modeling

The third step was to create a machine learning model that best rep-
resents the compressed air analysis. The historical data were utilized to
create several machine learning models so the validation metrics could
be compared and the best model could be identified. Five ML models
were created. Descriptions of these five machine learning models are
provided below:
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Fig. 5. Correlation plot between variables.

1. Deep Learning (DL) is an artificial neural network that con-
sists of neuron layers. There is the input layer, the hidden
layers, and the output layer. Supervised deep learning mod-
els use back-propagation and are based on stochastic gradient
descent. (Schmidhuber, 2015)

2. Distributed Random Forest (DRF) selects groups of features at
random and favorably splits the data based on the subsets of
predictors. The number of trees wanted depends on the user,
but the process is continuously repeated for a specified num-
ber of iterations. A random subset is created with each new
iteration. (Liaw and Wiener, 2002)

3. Gradient Boosting Machine (GBM) also utilizes decision trees,
but adds a new tree at each iteration to focus on the weaknesses
in the model and minimize the mean squared error. (Touzani
et al., 2018)

4. Generalized Linear Modeling (GLM) describes various general
distributions, like Gaussian and Poisson, that can estimate the
response variable. (Xia et al., 2021)

5. Stacked Ensemble (SE) is a metalearner that uses multiple base
learners. A metalearner model creates a model based on the
best models from the other four models. A stacked ensemble
combines the information from all the chosen base learners
(i.e., DL, DRF, GBM, GLM) to create a more experienced model
to create a single stronger model. A stacked ensemble uses cross-
validation to avoid overfitting the model, a common issue in
GBM and GLM. Cross-validation occurs when the data is split
into a number of groups, and the majority of those groups are
used to train the model, and the others are used to validate the
model. This subgrouping, training, and validation will occur for
as many iterations as the user specifies. (Xia et al., 2021)

In addition to the validation metrics, each trial output variable assigns
numeric values from 0 to 1 to each variable. 0 indicates the variable
had little effect on the model, while a value closer to 1 indicates a
greater effect on the model. Variables with variable importance of
0.02 or below were removed from the model. Variables with little
importance can add unnecessary information to the model making it
more complicated.

3.4. Model validation

Validating the model provides evidence that the model is perform-
ing up to the expected standards. Models can be easily created, but
the evidence is needed to show that it is accurate and reliable, so
it is important to validate the model by testing it against historical
data. The model can be evaluated through different validation metrics.
Validation metrics are a way to compare models and understand how
well the model could predict values. Three key validation metrics were
used to compare the various models’ quality. These metrics are the
R-squared (R2), mean absolute error (MAE), and root mean squared
error (RMSE). As shown in the Eq. (14), the R2 value is the coefficient
of determination that tells how close the regressor, or model, is to
the actual data. R2 values indicate how much of the variation in the
data can be explained by the model. If the model can explain all the
variations, then the R2 would be one, while it would be zero if the
model did not explain any of the data. As shown in Eq. (15), the MAE
value measures the average difference between the predicted and actual
values in the regressor. The smaller the MAE value is, the smaller the
error amount. As shown in Eq. (16), the RMSE is similar to MAE, but the
square root is taken from the squared difference between the predicted
and actual values. As with the MAE value, RMSE values indicate better
regressors when the value is closer to zero.

𝑅2 =
∑𝑛

𝑖=1(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖 − 𝑦𝑑𝑎𝑡𝑎)2
∑𝑛

𝑖=1(𝑦𝑑𝑎𝑡𝑎,𝑖 − 𝑦𝑑𝑎𝑡𝑎)2
(14)

𝑀𝐴𝐸 =
∑𝑛

𝑖=1
⌊

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖 − 𝑦𝑑𝑎𝑡𝑎
⌋

𝑛
(15)

𝑅𝑀𝑆𝐸 =

√

∑𝑛
𝑖=1(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖 − 𝑦𝑑𝑎𝑡𝑎)2

𝑛
(16)

where 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖 is the predicted values i, 𝑦𝑑𝑎𝑡𝑎 is the historical values
achieved from the training dataset, n is the number of ARs in the
dataset, and the 𝑦𝑑𝑎𝑡𝑎 is the average value.

4. Results

The different machine learning models can be compared through
the validation metrics and new cases introduced to the models. The
models with superior validation metrics indicate the model should
perform well, but introducing new cases to the models allows the
models’ predictive accuracy to be tested. The accuracy of the models
can therefore be compared to identify which model can be adapted to
predict energy demand savings for repairing leaks in CASs accurately.
Utilizing the historical data, multiple models were created to predict
savings in CASs. With each consecutive model, variables were removed
if they had less significance to the model since unimportant variables
can create poor models with irrelevant data. The best models and their
results are selected. Table 7 compares the validation metrics for five
different models. R2 values closer to one indicate the model can fit
the training data well. For example, the gradient boosting machine
model has the highest R2 value, so its model can account for almost
all variations in the data. The distributed random forest has the lowest
R2 value, so its model can account for the majority but not all variation
in the data. From applying various machine learning models to the
collected data, it can be seen what variables are most important to
the estimated savings from repairing leaks in CASs. Variables were
removed if they had a less significance to the models which left the data
with seven variables: 𝐶avg, employee, horsepower of the CAS, electricity
usage variables, area, utility cost, FP0 In each model, the variables are
weighted differently which impact how each model uses the variable
data to predict.

Fig. 6 provides insight into what variables influence energy demand
savings for the ARs of repairing leaks in CASs. Only the most impor-
tant variables and their scaled importance are included. Since stacked
ensemble (SE) combines the best models, it does not have variable
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Table 7
Comparison of the validation metrics for five machine learning models applied to predict energy savings in CASs.

Machine learning model Validation metrics Cross-validation

R2 MAE RMSE R2

Deep learning .852 2.910 5.22 .815
Distributed random forest .786 4.187 6.272 .779
Gradient boosting machine .999 0.144 0.220 .803
Generalized linear modeling .825 3.739 5.667 .787
Stacked ensemble .974 1.431 2.168 .834

Fig. 6. The relative variable importance for each model.

importance, but one for the other four applicable models (GBM, DRF,
GLM, DL) is included. For all the models, the average compressed
air consumption is the most important variable, which makes sense
because the quantity of compressed air has a clear correlation to the
amount of compressed air lost through leaks. The horsepower of the
compressors is also not a surprising variable since the horsepower is
another indicator of the capacity of compressed air that the compressor
can produce. Fraction power at no production is another variable that
is not surprising since it is frequently used in calculating savings.
Compressors have different control modes that affect the fraction power
at no production, which was previously discussed. The other four vari-
ables identified as having importance to savings are more surprising.
These four variables are indicators of the size of the facility. Facili-
ties frequently have tools powered by compressed air that individual
employees operate. Thus, the number of employees could relate to the
number of compressed air tools. Similarly, the annual electricity and
utility costs indicate the plant’s energy usage. The energy usage coupled
with the size of the compressor can help the model identify how much
energy usage is going towards the compressors and, therefore leak.

The five models were tested against data not included in the training
or cross-validation data. Data from three separate industrial energy
audits were used in cases to compare the predicted energy demand
savings for each model. Only the previously discussed seven variables
were used to predict the kilowatt savings for three compressed air leak
recommendations.

In the first case, the facility undergoing the energy audit had
ninety employees, 98,000 square feet of area, an annual utility cost
of $149,272, and used 1,974,155 kWh of electricity per year. The
actual energy demand savings calculated during the energy audit were
3.9 kW. Fig. 7 shows each model’s predicted energy demand savings
as columns with a line indicating the percent error from the predicted
savings and the originally calculated savings. The predicted energy
demand savings range from 4.25 kW to 6.21 kW, with most predictions
within one kW of the actual energy demand savings. The outlier is

6.21 kW from the GBM, which tends to overfit the data. The DL model
predicted energy demand savings closest to the calculated savings.

The facility was much larger in the second case than in the first case.
There were 655 employees, square footage of 418,855, an annual utility
cost of $ 3,296,258, and used 46,960,650 kWh of electricity per year.
The actual savings were 55.3 kW. Fig. 8 shows the predicted values
from each model compared to the actual energy demand savings. Since
the facility was large, the predicted and actual energy demand savings
are higher than in the first case, and the predicted energy demand
savings range is much larger. Most manufacturers use compressed air
for various usages, so it would be understandable that the compressed
air usage and leaks would increase with facility size. The DRF model
underestimates the energy demand savings while the other models
overestimate, with the stacked ensemble model predicting the highest
savings. In this case, the GBM model has the least percent error,
followed by the distributed random forest model.

In the last case, the facility had 180 employees, square footage of
170,000, an annual utility cost of $1,321,244, and used 11,741,214
kWh of electricity per year. This facility has a size between the first
and second cases. The actual savings were 12.4 kW. Fig. 9 shows the
predicted values from each model compared to the actual savings.
The distributed random forest model had the least percentage error
compared to the original savings.

From the previous three example cases, the percentage of error was
calculated for each combination of model and case. Fig. 10 shows each
case’s percent error and average error for each model. The overall
accuracy and precision of the models can be seen as well as how
each model performs depending upon the facility size. Case 1 has
the smallest facility size, case 2 has the largest, and case 3 has a
size between the first two. Depending upon the facility size, different
models could be used to predict energy demand savings accurately.

5. Discussion

Five machine learning models were created and then the models
were compared to each other through validation metrics, variable
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Fig. 7. Comparison of predicted energy demand savings for case 1.

Fig. 8. Comparison of predicted energy demand savings for case 2.

importance, and cases applying each model to a new scenario. None of
the models consistently performed well in the validation metrics and
all three trials. Based on the validation metrics, the gradient boosting
machine has superior metrics and should fit the data best. The cross-
validation metric for the stacked ensemble has an R-squared value
closest to one, indicating the stacked ensemble model should also
perform very well against new data. By applying the five different
models to three industrial cases, it was observed that the gradient
boosting machine model and the stacked ensemble model did not
predict savings accurately, with average percent errors of about 30%.
The stacked ensemble model had over a 50% error in the third case.
Though the stacked ensemble had good validation and cross-validation
metrics which should indicate a well-performing model, it is clear from
the three cases that the model is severely lacking in accurately predict-
ing savings for scenarios unfamiliar with the input data. Conversely,
the distributed random forest model had relatively poor validation
metrics but performed well in different cases. The R-squared values for

the validation and cross-validation metrics were the lowest of all the
models, and the MAE and RMSE values were the highest.

During the application of the ML models to three different testing
cases, the distributed random forest model had the least amount of
average error. The distributed random forest model still had an error in
its predictions, but since the model does not overfit the data. The error
is more contained and smaller than in the other models because it does
not extrapolate as much as the other types of machine learning models
discussed in this paper. Though the distributed random forest model
performed most accurately overall, other models performed better
for specific cases. The deep learning model predicted more accurate
savings for the first case, while the gradient boosting machine model
predicted most accurately for the second case. So the deep learning
model may be used for smaller facilities, while the gradient boosting
machine model may be used to predict energy demand savings for
larger facilities. The distributed random forest model has the lowest av-
erage error for all three cases so this model is more generally applicable
to all situations.
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Fig. 9. Comparison of predicted energy demand savings for case 3.

Fig. 10. Summary of percent error for each case.

Though the distributed random forest model performs the best out
of all the models, more data may be needed to create a better model.
Only 170 data points were used, and it is clear that the models are still
lacking in accuracy. The distributed random forest model can predict
kilowatt savings for repairing leaks within an average error of 17%.
More historical data would improve this average percent error, but the
model can be used in energy audits to approximate kilowatt savings
within an error of 17%. One of the limitation of this study is that
there is no data feedback from the manufacturers to determine whether
these savings are accurate. Obtaining more data and feedback from the
manufacturers would be recommended in future studies. Though the
model is not a perfect predictor and can have errors in the historical
data, it is a start to better understanding how machine learning can
work with various systems in manufacturers since data collection and
analysis is becoming so crucial in recent years.

6. Conclusion

Compressed air is frequently used by manufacturers for control
valves and other pneumatic tools. Air compressors are large energy
consumers, so it is critical to minimize compressed air usage to min-
imize compressed air costs. Compressed air leaks can consume much
of a facility’s total compressed air consumption. Repairing leaks is a
good practice, but facility personnel often do not repair them since it
can be time-consuming. This paper discusses the potential savings from
repairing compressed air leaks based on historical data from an energy
auditing research program. Energy audits have helped calculate energy
demand savings in several ways over the years in this program. Since
the calculations have been completed differently, a machine learning
model was created to estimate the energy demand savings. The dis-
tributed random forest model can help energy auditors better estimate
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savings for repairing leaks in CASs. The most important variables were
also identified. These variables include general facility information and
specific compressor information, but the variables should not provide
much difficulty in obtaining during a physical or virtual energy audit.
This paper provides insight into the important factors contributing to
leaks in CASs and why it is crucial to repair them regularly to save
money and energy while decreasing emissions.
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