4-17-2013

Visual Cues used for Relative Distance Judgements in 2D Displays

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
"Visual Cues used for Relative Distance Judgements in 2D Displays" (2013). Stander Symposium Posters. 274.
https://ecommons.udayton.edu/stander_posters/274

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, msclangen1@udayton.edu.
Exocentric Distance Judgments in Computer Generated 2D Images
Laura Janosko
Advisor: Dr. Benjamin R. Kunz

Introduction:
- The quality and detail of computer graphics has been shown to influence distance judgments in interactive virtual environments.
- Kunz, et al. (2009) found that the quality of graphics influenced the accuracy of distance judgments in a 3-dimensional virtual environment.
- Cue Theory states that we combine depth cues (such as texture and shadows) in order to perceive depth (Cutting and Vishton, 1995).
- High quality graphics include important depth cues such as shadows and surface textures that may be missing in low quality graphics.
- The importance of shadows as a depth cue was demonstrated in a study by Hu, et al. (2002) that suggests the presence of shadows improved spatial judgment accuracy in interactive 2D images.
- The proposed experiment will investigate whether distance judgments between objects (exocentric) are more accurate in a high quality graphics condition than a low quality condition.

Method:
- Overview: Participant viewed high or low quality computer-generated versions of the desktop and objects shown below. They were asked to judge the distances between objects depicted in the computer-generated scenes.
- Materials: Each scene consisted of a computer-generated desktop and 5-10 computer-generated objects positioned on the desktop in various arrangements.
- Procedure: For each trial, participants will:
 - View a high or low quality scene
 - Be prompted to judge the distance between two objects
 - Verbally report the perceived distance using an arbitrary, standard unit

Predictions:
- Shadow and texture information are useful distance cues in 2-dimensional computer-generated images.
- Distance judgments will be more accurate when shadow and texture depth cues are available (high quality condition).

Results:
- No statistically significant difference between the means.
- Trending towards supporting our hypothesis.
- Changes could make enhance the differences between means.
- Make the scale a smaller portion of the desk.
- Have participants make different distance judgments in HQ and LQ trials.

Implications and Future Directions:
- Future studies will need to be conducted to see if shadow and texture information influence exocentric distance judgments in 2D images.
- Shadow and texture information may not effect distance judgments.
- Experiments conducted in 2D images may not apply to those in 3D virtual environments.
- Exocentric distance judgments may be influenced by different depth cues than egocentric distance judgments.
- Still no answers as to why participants were more accurate in Kunz, et al.’s (2009) experiment.
- Other secondary depth cues should be tested.

References: