4-17-2013

Generalized Multi-latin Squares

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/281

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Generalized Multi-Latin Squares
Lydia Kindelin
Department: Mathematics
Advisor: Dr. Atif Abueida
April 2013

ABSTRACT
The research explores properties of generalized multi-latin squares and proposes ways to construct them. A \((n, t, m, p, g) \)-generalized multi-latin square is an array consisting of \(n \) rows and \(n \) columns, where each cell is filled with \(m \) symbols from a collection consisting of \(t \) different symbols, any symbol appears in each row and in each column \(p \) times, and any pair of different symbols occur together \(g \) times. Understanding trivial examples, the properties, and the mathematical relationships behind the problem reveals multiple examples and a systematic way to build generalized multi-latin squares.

RELATED DESIGNS
\(\text{BIBD} \) is a pair \((V, B)\) where \(V \) is a collection of \(v \) symbols and \(B \) is a collection of \(k \)-subsets of \(V \) (blocks) such that each element of \(V \) is contained in exactly \(r \) blocks and any \(2 \)-subset of \(V \) is contained in exactly \(\lambda \) blocks. \text{Parallel classes} partition the set of blocks so that a symbol appears once in each class. \(\text{RBIBD} \) is a \(\text{BIBD}(v, k, \lambda) \) whose blocks can be partitioned into parallel classes.

CONSTRUCTION METHOD
Let \(c \) be the number of parallel classes and \(\ell \) be the number of block in each parallel class from the \(\text{RBIBD}(v, k, \lambda) \).
1. Build \(c \times \ell \times \ell \) square permuting the blocks each row
2. Arrange the \(\ell \times \ell \) squares into a \(c \times c \) square
3. To extend the generalized multi-latin square, expand the \(c \times c \) square by a factor of \(c \) to use every parallel class the same number of times.
4. Let \(N \times N \) be the size of the square filled with \(\ell \times \ell \) squares.
 Therefore, \(N^2 = c \cdot s \) for some natural number \(s \).
 The result is a \((N \cdot \ell, v, k, N, s \cdot \ell)\)-generalized multi-latin square.

GENERALIZED MULTI-LATIN SQUARES
\(\text{RBIBD}(9, 3, 1) \)

Symbols: \(V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
Block size: \(k = 3 \)
Number of block in each class:
\(\ell = v/k = 9/3 = 3 \)
Number of blocks:
\(\binom{v}{2} / \binom{k}{2} = \binom{9}{2} / \binom{3}{2} = 12 \)
Number of Parallel classes:
\(c = \left[\binom{9}{2} / \binom{3}{2} \right] / 3 = 4 \)

\(\text{RBIBD}(51, 3, 1) \)

\((425, 51, 3, 25, 425)\)-generalized multi-latin square
\((595, 51, 3, 35, 833)\)-generalized multi-latin square

REFERENCES

ACKNOWLEDGEMENT
- Dr. Atif A. Abueida
- University of Dayton Honors Department
- University of Dayton Department of Mathematics
- Family and Friends

FUTURE RESEARCH
& APPLICATIONS
- To classify and characterize the existence of generalized multi-latin squares for any given parameters.
- Experiment variable design