4-17-2013

An Aronszajn Tree

Chester E. Lian
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Recommended Citation
http://ecommons.udayton.edu/stander_posters/290

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Definition. Every well-ordered set has a unique order type.

Theorem. There exists a tree of infinite height, whose branches are all of finite length.

Proof outline. We will define the levels L_n by transfinite recursion.

Let $P(\alpha)$ be the logical conjunct of the following statements:

(i) $L_\alpha \subseteq {}^\alpha Q$.

(ii) $|L_\alpha| \leq \aleph_0$.

(iii) For every $m \in L_\alpha$,

(a) m is increasing,

(b) sup ran $m \in Q$, and

(c) $m \upharpoonright \beta \in L_\beta$ for all $\beta < \alpha$.

(iv) For each $n \in \bigcup_{\beta < \alpha} L_\beta$ and each $q \in Q$ that satisfies $q \sup ran n$, there exists $m(n, q, \alpha) \in L_\alpha$ such that $m(n, q, \alpha) \sup ran n$ and sup ran $m(n, q, \alpha) = q$.

Define $L_0 = \{\varnothing\}$ so that $P(0)$ holds trivially.

Given L_α and that $P(\alpha)$ is true, define $L_{\alpha+1} = \{n \cup \{(n, q) : n \in L_\alpha \land q \in Q \land \neg \text{sup ran } n\} \cup \{n \} : |n| \leq \aleph_0\}$, with the convention that sup ran $\varnothing = \infty$.

By induction, we can verify that $P(n+1)$ is true as well.

Now, let $\lambda < \omega_1$ be a limit ordinal and suppose that $P(\beta)$ is satisfied for each $\beta < \lambda$. We define $L_\lambda = \{m(n, q, \lambda) : n \in \bigcup_{\beta < \lambda} L_\beta \land q \in Q \land q \sup ran n\}$, where $m(n, q, \lambda)$ is constructed in the following manner.

First, choose increasing sequences $\sigma : \omega \to Q$ and $\tau : \omega \to \lambda$ such that $\sigma(0) = \sup ran n$, $\sup \sigma = q$, $\tau(0) = \sup \tau$, and $\sup \tau = \lambda$.

Next, define $\mu : \omega \to \bigcup_{k<\lambda} L_\beta$ recursively by $\mu(0) = n$ and $\mu(k+1) = m(\mu(k), \sigma(k+1), \tau(k+1))$ for every $k \in \omega$.

Finally, define $m(n, q, \lambda) = \bigcup_{k<\lambda} \mu(k)$.

It can be shown that $P(\lambda)$ holds, thereby completing the recursion.

Theorem (König’s Lemma). If T is a tree of height ω, all of whose levels are finite, then T must have a branch of length ω.

In fact, this is true for an arbitrary cardinal.

Theorem (The Generalized König’s Lemma). Let κ be a cardinal. If T is a tree of height κ, all of whose levels are finite, then T must have a branch of length κ.

Definition (König’s Lemma). If T is a tree of height ω, all of whose levels are finite, then T must have a branch of length ω.

Orders

Definition. A set X is linearly ordered if and only if for all $a, b, c \in X$, we have $a < b$, $a = b$, or $b < a$.

Definition. A set W is well-ordered if and only if every nonempty subset of W has a least element.

Definition. Suppose W is a well-ordered set, α is an ordinal, and $f : W \to \alpha$ is a bijection such that for all $a, b \in W$, we have $a < b$ if and only if $f(a) < f(b)$. Then W is said to be of order type α.

Theorem. Every well-ordered set has a unique order type.

Trees

Definition. A tree is an ordered set (T, \lt) with the property that for each $x \in T$, the set $\{y \in T : y < x\}$ is well-ordered.

• The height of $x \in T$ is $h(x) = \text{order type of } \{y \in T : y < x\}$.

• The height of T is $h(T) = \sup(h(x) + 1 : x \in T)$.

• The α-th level in T is $L_\alpha = \{x \in T : h(x) = \alpha\}$.

The width of L_α is its cardinality $|L_\alpha|$.

• A branch is a linearly ordered subset $B \subseteq T$, such that if $B \subseteq C \subseteq T$, then C is not linearly ordered. The length of a branch is its order type.

Definition. An Aronszajn tree is a tree of height ω_1, such that none of its levels has uncountable width, and none of its branches has uncountable length.

References

