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Abstract
This research would develop a method of more accurately detecting objects using machine learning. There 
is plenty of current research and algorithms to tackle this problem. Our approach would use a dataset 
gathered with 2-Dimensional Infrared Imagery as well as 3-Dimensional LiDAR Data. We would develop a
deep learning network with the ability to “learn” using both of these datasets. This proposed fusion network
will perform better than either of the individual networks.
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1. Introduction

        Currently, there are many algorithms used to classify objects. Many of the 

approaches to this problem, use deep learning and neural networks. The most common 

approach uses 2D imagery to train and test the network. There is lots of research on this 

topic, and many deep learning architectures to optimize this approach. A growing field 

uses 3D LiDAR data to solve the same problem, which requires a dataset comprised of 

points in a 3D space. There is increasing work in this space, a lot of which, also uses deep

convolutional networks. There are pros and cons to each approach, which will be 

expanded on later. 

        We have an aerial dataset of both 3D LiDAR captures and 2D RGB imagery of plots

of land in Surrey, BC. To classify these plots of land in categories, such as, “Farm,” 

“Commercial,” “Residential,” “Forest,” etc. we want to take advantage of both datasets. 

Our approach uses a neural network, capable of handling both datasets. To do this, these 

datasets, are individually processed, using respective 2D and 3D open-source 

architectures. This is done until the features (a reduced dimension of the original piece of 

data) are extracted for each modality. At this point, the features are fused, and the 

combined features are processed through the remainder of the 3D architecture. In this 

way, we can use information from both sources to outperform the current state-of-the-art 

architectures.

          My contribution includes:

• An aerial dataset labeled for classification, including 3D pointclouds and 

respective 2D aerial imagery

• A fusion architecture capable of using both 2D and 3D information for 

classification

• This network outperforms a state-of-the-art network, KPConv in classifying land 

area
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2. Related Work

2.1. 3D and 2D Deep Learning Comparison

       2D deep learning strategies have been around for far longer, so there is more research

done in this area. Some of the reasons that 3D processing has started to become more 

popular, is there is reason to believe it has a higher degree of accuracy of detection, and 

in this case classification. One of the reasons it performs better, is that it simply contains 

more information. For example, with the dataset we used, for one plot of land the 

pointcloud is 31.1 MB and the respective image is 138.9 kB. Another reason, is that 

LiDAR scans are not tricked by sunlight or reflections. A picture, taken pointed in the 

direction of sunlight, result in images that have high contrast or can look overly saturated.

This is similar to how our eyes work, when we have to squint when trying to make out 

something in front of heavy sunlight. LiDAR, which uses a laser scan to determine it’s 

points is not thrown off by sunlight. Again, with capturing images with high reflectance, 

3D will outperform 2D. As far as processing time is concerned, 2D is much faster than 

3D. Once again, this is because of the respective amounts of information for data 

captures. Processing 3D deep learning architectures can take magnitudes more computer 

power and time.

2.2. 2D Processing: ResNet Backbone

       The 2D processing portion of the fusion network is done with Mask R-CNN, the 

architecture most commonly used for 2D instance segmentation. For our purposes, we 

just need the 2D processing portion to extract a feature map from the original image. The 

part of this architecture that we utilize to accomplish this, is the feature extraction. In 

Mask R-CNN, this is done by passing this image through a deep CNN (Convolutional 

Neural Network), called a backbone, and is labeled as “CNN” in the Mask R-CNN 

architecture below.
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Figure 1: Mask R-CNN Architecture

The backbone of choice for this experiment is ResNet, because of it’s success in 

solving the vanishing gradient problem. This was a problem, where increasing the depth 

of CNN’s, lead to a steep drop in performance, due to over-saturation. Their solution was 

to create a shortcut connections that would skip a variable amount of layers, as seen in 

Figure 2. They were able to successfully create networks of depth, 34, 50, 101, and 152 

convolutional layers deep that outperformed their competitors.

Figure 2: A Residual Block of the ResNet Backbone
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The ResNet model we used, is “ResNet-101,” meaning that is has 101 

convolutional layers. The deeper networks have increased accuracy, but take longer to 

process. We chose “101” as a middle ground. The network we used was pretrained on a 

giant dataset, called ImageNet, which is comprised of 14 million images and 200 classes. 

Because it is pretrained on such a robust dataset, it is extremely good at extracting high-

level features.  

2.3. 3D Processing: KPConv (Kernel Point Convolution)

KPConv was chosen to be the architecture for 3D processing. This is because it 

outperformed many of it’s competitors in classifying the ModelNet40 dataset. KPConv 

operates by applying a weighted kernel to the point clouds for convolution where the 

weights within the kernel filter are weighted spatially. Prior work with 3D neural 

networks that operated with kernels often performed poorly due to the fact that kernels 

are often rigid 2D or 3D structures. A rigid filter applied to a point cloud meant that it 

was often poorly representing the cloud in the learning process as the rigid filters were 

not able to conform to the shape of certain features. Point subsets within the cloud that 

were represented by a large number of normalized planes of points were able to be 

successfully learned using the rigid kernels, but clouds with complex dimensionality 

could not fit properly within the kernel filter. To alleviate this rigid kernel problem, 

KPConv introduces a deformable kernel that is able to fit a specific subset of points 

rather than a specific space. In this kernel weights are assigned spatially such that the 

deformation of the kernel impacts the weights. By doing this KPConv is able to perform 

kernel based convolution on irregular surfaces and features. The dataset used to train this 

network, discussed in detail in section 3.1, focuses on the classification of land area, 

which has very irregular shapes, meaning that KPConv is expected to perform well on 

this dataset using the deformed kernel approach. The deformable kernel structure can be 

seen in Figure 3 below.
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Figure 3: KPConv Architecture with the Deformable Kernel

3. Methodology

3.1 Surrey Dataset

Figure 4: Sample Surrey Pointcloud Data (Commercial: Left, Residential: Right)

The dataset, used for this experiment, is a large-scale aerial LiDAR dataset, with 

respective RGB captures. The LiDAR pointclouds were used from Surrey, British 

Columbia’s open source data release as part of their “Open Data program,” and are 

captures across the city of Surrey. The first step was sending a hard drive to Surrey, to 

gather the dataset used for classification. Each plot of land was very large, and needed to 
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be split up into sections of 4. Once this was done, in an effort to label them according to 

their category of “cemetery, commercial, construction, farmland, field, forest, golf 

course, highway, park, recreation, residential, school, undeveloped, viaduct, or water,” a 

representation of them would have to be created to overlaid onto a map, to determine 

their class. Once completed, the setup on QGIS, can be seen in Figure 5 below.

Figure 5: QGIS Setup of LiDAR Representations for Labeling

To do this, the pointcloud files were converted to UTM Zone 10N, a system for 

describing the points on a longitude and latitude scale. Then, using their geolocation 

information, see-through shapefiles were created with a red border, to indicate their 

position on a map. These were then, parsed through and labeled according to class.

To get the respective aerial images, the location of the pointclouds were compared

to a set of TIFFs (Tagged Image Format Files), also provided by Surrey. The LiDAR 

plots were much smaller, so the respective TIFF’s were cropped accordingly, and 

converted to JPGs. Once the 2D and 3D dataset was compiled, they were split by class, 

evenly, into an 80/20 train/test split. This dataset is comprised of 318 pointcloud, image 

pairs, with 254 training and 64 testing samples each. The class breakdown, can be seen 

below, in Figure 6.
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Figure 6: Surrey Dataset Category Distribution

Also, to note, if there was multiple classes within a section of land, it was labeled 

according to the dominating region. For example, in Figure 7 below, this would be 

classified as farmland because it has the most land area, even thought there are other 

classes present.

Figure 7: Classification by Land Area

Forest

Farmland

Field
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3.2. Architecture Integration

The goal of this project is to process the 2D and 3D datasets separately, through 

Mask R-CNN and KPConv respectively. This would involve running these architectures 

in parallel. Instead, we decided to use KPConv as the general architecture, and before it 

processes the 3D features, fuse the 2D features, and processes these together through the 

rest of the architecture. 

One of the first steps to be able to process these features in parallel is to run these 

architectures successfully on the same version of TensorFlow. This happened to be 

TensorFlow version 1.15.0. KPConv is strictly a 3D architecture, so the next thing was to

add a way for KPConv to handle 2D images. The start of this was creating a folder in 

KPConv to store the images, and name the images the same as their matching 3D 

pointcloud. When the 3D pointclouds are loaded, KPConv stores this as a pickle file, 

which saves the data as a Python object, for accessibility. The list of elements stored in 

this pickle file had to be adjusted in the model to store the JPG images as well. In the 

architecture, where the 3D pointclouds were loaded, the inputs was adjusted to handle 2D

images, and these were loaded in parallel with the pointclouds.

Also, when this information is sent to the GPU for processing, the dataset is to 

large to send all at once. The architecture resolves this by sending information in batches.

These batches are specific to the input data and architecture, so they had to be adjusted to 

handle the additional information. 

3.3. Feature-level Fusion

There are three main types of fusion: data-level fusion, feature-level fusion, and 

decision-level fusion. To best utilize both datasets, we decided to fuse them at the 

feature-level. This is because KPConv and Mask R-CNN are both state-of-the-art 

architectures for 3D and 2D data, respectively. In this way, we take advantage of the high

performance of both architectures for each modality, while classifying based on both sets 

of features. 

As mentioned, the way Mask R-CNN extracts features from the input images, is 

passes them through a ResNet backbone. To do this, while simultaneously running 

KPConv, Mask R-CNN was embedded inside this architecture. Then, when KPConv was 
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generating the 3D features, Mask R-CNN was loaded as a Python module, and the 

ResNet processing step, was called like a function. One image was passed at a time, and 

it returned 5 sets of features: C1, C2, C3, C4, and C5. These are the last layers for each 

stage of ResNet-101.

The features returned, can not be directly concatenated with the 3D features, for a 

number of reasons. They are Keras layers, so must be converted into TensorFlow tensors.

Also, they are a different shape than the 3D features. This is an issue, when passing these 

features to the Convolution Head of the model. To solve this, we reduced the number of 

dimensions using a TensorFlow mean function across ‘axis 1’ and ‘axis 2.’ The 2D and 

3D features are then able to be concatenated and sent to the remaining portion of the 

network. 

Figure 8: Fusion Architecture

FC Layers

Classification Output
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4. Results

4.1. Experimental Setup 

          This experiment was meant to compare the original KPConv architecture to the 

KPConv network with additional fused feature (Fusion Network). To do this, each 

network was run individually using a 2080 Ti NVIDIA Graphics Cards. All the 

parameters, including the training and testing set, were held constant. The only thing that 

changed in the Fusion Network was the features passed into the Classification Head of 

the KPConv network. For the KPConv architecture, this was just the 3D features, and the 

Fusion Network, used the concatenated features. Each architecture was trained for 150 

epochs, and the accuracy was computed across all classes.

          The key parameters of this architecture is the first subsampling cell size dl0 and the 

density parameters. In KPConv, the input clouds are subsampled in a grid-like fashion, to

section off the clouds into more manageable sizes. For the most part, the bigger this 

parameter is, the larger the section of the cloud is being looked at, which usually 

correlates to a lower performance of the architecture. The input clouds are very large, so 

the subsampling parameter was set at a rather high value of 2.5 meters, for the GPU to be 

able to handle. Also, the density parameter is specified as the density of neighborhoods 

for deformable convolutions. This was set somewhat low at 6.0, where a higher density, 

such as 10.0 would be preferred. Again, this was to mitigate some of the computation 

cost put on the GPU.

4.2. Experimental Results

          As expected, the feature-fusion architecture outperformed KPConv. This is because

it had additional information, and was setup in a way to utilize it effectively. This can be 

seen in the overall classification accuracy, below in Table 1.

Network Accuracy (%)

Fusion Network 70.98

KPConv 62.90

Table 1: Overall Classification Accuracy
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          Furthermore, this can be realized on a per-class basis, with a confusion matrix. 

With this, the classification of each piece of testing data can be seen. The columns in this 

table represent the predicted classes and the rows represent the actual classes. This means

that the “2” under the residential class was predicted as residential, while it was actually 

commercial, because it is in the commercial row. In this way, all the correct 

classifications can be seen in the green diagonal, and all other values are mis-

classifications. This was created for each network, with Table 2 representing the Fusion 

Network and Table 3 representing KPConv.

Commercial Construction Farmland Field Forest Golf Course Park Recreation Residential School Undeveloped Water

Commercial 4 0 0 0 0 0 0 0 2 0 0 0

Construction 0 0 0 0 0 0 0 0 0 0 0 0

Farmland 1 0 9 2 0 0 0 0 0 0 0 1

Field 0 0 0 1 0 0 0 0 1 0 0 0

Forest 0 0 0 0 4 0 0 0 1 0 0 0

Golf Course 0 0 1 0 0 0 0 0 1 0 1 0

Park 0 0 0 0 0 0 0 0 1 0 0 0

Recreation 0 0 0 1 0 0 0 0 0 0 0 0

Residential 0 0 0 1 2 0 0 0 22 0 0 0

School 0 0 0 0 0 0 0 0 0 0 0 0

Undeveloped 0 0 0 0 0 0 0 1 0 0 0 0

Water 0 0 0 0 1 0 0 0 0 0 0 4

Table 2: Fusion Network Confusion Matrix

Commercial Construction Farmland Field Forest Golf Course Park Recreation Residential School Undeveloped Water

Commercial 1 0 0 0 0 0 0 0 5 0 0 0

Construction 0 0 0 0 0 0 0 0 0 0 0 0

Farmland 0 0 8 5 0 0 0 0 0 0 0 0

Field 0 0 0 0 0 0 0 0 1 0 0 1

Forest 0 0 0 0 3 0 0 0 2 0 0 0

Golf Course 0 0 1 0 0 1 0 0 1 0 0 0

Park 0 0 0 0 0 0 0 0 1 0 0 0

Recreation 0 0 1 0 0 0 0 0 0 0 0 0

Residential 1 0 0 1 1 0 0 0 22 0 0 0

School 0 0 0 0 0 0 0 0 0 0 0 0

Undeveloped 0 0 1 0 0 0 0 0 0 0 0 0

Water 0 0 0 0 1 0 0 0 0 0 0 4

Table 3: KPConv Confusion Matrix
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          To strictly compare the networks on a per-class basis, the accuracies for each class 

with testing data present were computed. This can be seen below in Table 4 and 5, for 

each architecture, with the winning classes highlighted.

Category Accuracy (%)

Commercial 66.7

Farmland 69.2

Field 50.0

Forest 80.0

Golf Course 0.0

Park 0.0

Recreation 0.0

Residential 88.0

Undeveloped 0.0

Water 80.0

Category Accuracy (%)

Commercial 16.7

Farmland 61.5

Field 0.0

Forest 60.0

Golf Course 33.3

Park 0.0

Recreation 0.0

Residential 88.0

Undeveloped 0.0

Water 80.0

4.3. Discussions

          While KPConv uses only 3D data, it mostly bases its classification on shape. This 

is because it learns based on the arrangement and density of points. This is great for 

objects that have very specific shapes and defined structures. However, it lacks other 

information found in pictures, such as shadows, textures, and colors. This added 

information is a huge advantage in classes with similar shapes. In this experiment, this is 

exactly where the fusion network outperforms KPConv, in the farmland and field classes 

especially. The 2D information is especially valuable in these classes, to distinguish 

between each other, because it adds color information of a brown farm instead of a green 

field. Similarly, with KPConv, many of the Commercial classes were mis-classified as 

residential. The aerial imagery helped prevent the rate of this mis-classification. Again, 

the shape of these classes are very similar, with sidewalks, buildings, and foliage. The 

Table 5: Fusion Network Per-class 
Accuracy

Table 4: Fusion Network Per-class 
Accuracy
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only difference is the nature of these buildings as being commercial building or having 

parking lots nearby that make it commercial.

Figure 9: Sample Residential Aerial Image

          A complicated part of this problem, with the dataset used, is that it’s sometimes 

hard to distinguish between classes, for a couple of reasons. One, is that it’s hard to draw 

a line between some of the classes, such as field and park. So someone else may label the 

dataset slightly differently. Second, there are many sections of land that contain multiple 

classes within the sections. As mentioned, in Section 3.1, when there are multiple classes 

in each section, they are labeled based on the dominant class, or the class with the 

majority of land area. This makes it hard to classify if there are 3 classes present, for 

example, such as, farmland, forest, and residential and the split it is 30%, 30%, and 40%, 

respectively. While this class is labeled as residential, because it makes up 40% of the 

land cover, the entire land mass is labeled as residential. This is confusing to the network,

if it has high certainty that it is farmland or forest, while it is not necessarily wrong, it 

will have a large affect on the backpropagation of the network. This also makes it 

challenging for the network to converge.

          One other thing to note, is that some of the pointclouds overlapped with multiple 

TIFFs and this lead to some of the aerial images being cropped. The missing section was 

filled in with black, as seen below in Figure 10. While this did not lead to a full 
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utilization of the 2D dataset, if we consider this dataset added information, it was still 

advantageous.

Figure 10: Cropped TIFF Image

4.4. Future Works

          To be able to deal with sections of land that have multiple classes present, instead 

of classifying based on the dominant class, these should be labeled using all the classes 

present. This could be done with pointclouds being able to be labeled with multiple 

classes in order of prevalence. To handle multiple classes, the architecture would have to 

be slightly modified to handle classes of multiple labels, and the nature of the classifier 

would need to be adjusted. Currently the classifier uses a sigmoid function, which outputs

confidence for each class, with all of them adding up to 1.00. Such as if the network were

0.6 (60%) confident that it was farmland and 0.4 (40%) confident that it was field, all 

other classes would be 0. Instead, using a softmax classifier, all classes could be weighted

on a scale of 0 to 1.0 individually. This network would then be able to assert that it thinks

1.0 (100%) confidence for farmland and 1.0 (100%) confidence for field. 

          Also, for handling pointclouds that overlap multiple TIFF files, there needs to be a 

way to merge the TIFF files, before finding the overlap. In this way, we would be able to 

recreate the complete 2D aerial capture for each pointcloud.

          As far as the fusion network is concerned, it performs well as is, but there should 

be other ways tested of fusing the information, to verify this is the best method. There are
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other places in the KPConv architecture that the features could be fused. Another good 

candidate would be at the input section of the network, that could demonstrate better 

classification.

5. Conclusions

          In this work, we propose a dataset, consisting of 2D images as well as 3D 

pointclouds, labeled for classification. Using this dataset, we created a feature-level 

Fusion Network, capable of classifying this dataset, with state-of-the-art results. As 

demonstrated by this experiment, feature-level fusion yields better results than strictly 

classifying using KPConv. We believe this can work with other datasets, that have 

registered 2D and 3D captures.
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