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Abstract 
Gliomas, which are brain tumors that arise from glial cells, are some of the most aggressive and lethal types 
of tumors. These brain tumors are difficult to treat because not enough information regarding the mutations 
present in these tumors exists. This project studies effects of a p53 mutation on Drosophila glioma 
progression and then will test to see if this results in resistance to current chemotherapy. The main goal of 
this endeavor is to investigate the numerous defects occurring at the cellular and biochemical level in 
gliomas, which will give insight into why these types of tumors are so difficult to treat. Additionally, this 
document also discusses some promising chemotherapeutic agents found through a drug screen project. 
The effects of five different Tyrosine Kinase inhibitors on glioma development are presented here. 
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Preface: In September of 2017, I began working in Dr. Kango-Singh’s lab as a part of the 

drug screen team. This project aims to look at the effects of a slew of possible 

chemotherapeutic agents on glioma development. As a member of this group, I had the 

opportunity to learn many lab techniques, how to work with fruit flies and gain a better 

understanding of this type of cancer and its mechanisms. Due to my interest in the subject 

of brain tumor research, I decided to apply to the Berry Summer Thesis Institute in hopes 

of working on a project to write my honors thesis about. With the help and guidance of 

Dr. Kango-Singh, I began working on a stand-alone project in addition to the chemical 

screen. This new project involved inducing a p53 mutation in a Drosophila glioma model 

in order to explore how this specific mutation affects tumor progression. We had planned 

to treat these tumors with various Tyrosine Kinase inhibitors to see if this mutation 

contributed to the tumor’s resistance to therapy. Although the summer provided a 

successful start to the project, which involved some initial tests, we were not able to 

complete all of our goals. COVID-19 shut down our lab work, as the university halted in-

person undergraduate research. Even though my thesis project was cut short, there were 

multiple promising findings with respect to the drug screen project, which I will discuss 

in this paper. Furthermore, I have compiled the findings of numerous papers and articles 

in order to write a literature review regarding the p53 mutation and gliomas. 
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Drug Screen 

1. Background 

Brain cancer, specifically glioblastoma multiforme (GBM) is one of the most deadly 

and devastating diseases. Median survival after diagnosis is about 15 months, even after 

surgery, radiation and chemotherapy. Patients are often plagued by headaches, seizures 

and other neurological symptoms, along with the side effects of treatments. In order to 

properly treat this disease, it is necessary to develop and identify more effective, targeted 

treatments. 

 

In an effort to identify possible treatment options for glioma patients, the Kango-

Singh lab developed a drug screen which involves testing the effects of many different 

chemicals at varying concentrations on fruit fly gliomas. This involved creating a genetic 

cross that would induce a feasible glioma model. This was accomplished by inducing the 

two most frequently occurring human glioma mutations into the Drosophila model. The 

Ras/MAPK signal transduction pathway was altered by inducing a RasV12 mutation, 

Fig. 1 Coronal T1 C+ MRI of a patient 
suffering from a “butterfly” glioma 
(GBM that has spread to both 
hemispheres of the brain). Patients 
presenting with bilateral involvement 
typically have even worse survival 
outcomes and usually die within a few 
months following diagnosis, despite 
treatment.  
Image retrieved from: Gaillard, Frank. 
(2016). Glioblastoma NOS (butterfly 
morphology). Radiopaedia. 
https://radiopaedia.org/cases/glioblastom
a-nos-butterfly-morphology?lang=us 
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which is one commonly found in human cancers. PtenRNAi was co-expressed with this 

mutation in an effort to better mimic human tumors. When Pten functions normally, it 

plays a role in growth regulatory pathways as a tumor suppressor. However, since Pten 

was eliminated, its tumor suppressor abilities were lost, and results in tumor 

development. The combination of this mutation and RasV12 drove tumor development and 

progression to create an effective glioma model. The PtenRNAi ; RasV12 stock were crossed 

with the repo GAL4 UAS GFP stock, which drives expression of UAS-linked transgenes 

in the  glial cells in developing larvae. The GFP allows for tracking glial cells using 

fluorescent microscopy imaging, as glial cells glow green due to expression of the GFP 

(Green Fluorescence Protein). Tyrosine Kinase inhibitors were fed to the Drosophila 

larvae, and tumor progression/growth was analyzed. 

 

 

 

 

 

 

 

 

 

Fig. 2 Mutations within Ras/MAPK and PI3K/ Pten 
can drive tumorigenesis and tumor growth. 
( https://www.researchgate.net/figure/Ras-signaling-
pathways-Ras-signaling-is-involved-in-numerous-
cellular-functions_fig1_266582872) 
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All of the drugs used in this project are classified as Tyrosine Kinase inhibitors. 

They are also approved by the FDA for the treatment of certain cancers as well as other 

dangerous diseases. Tyrosine Kinases are a family of enzymes which function as part of a 

signaling cascade and are known to mediate cellular processes important to the 

prevention of cancer. They do this by selectively phosphorylating substrates. Tyrosine 

kinases play a role in cell metabolism, migration, apoptosis, proliferation and 

differentiation. Certain mutations can lead to loss of these functions and the development 

of cancer. Furthermore, cancerous mutations in this cascade can contribute to 

angiogenesis as well, making tumors more vascularized [21]. 

Tyrosine kinases and tyrosine phosphatases regulate tyrosine kinase phosphorylation, 

however, in mutated cells, this antagonistic control becomes dysregulated. Cancers such 

as glioblastoma, non-small cell lung cancer, multiple myeloma and ovarian cancer are 

known to result, in part due to mutations within the extracellular domain. Such mutations 

lead to constitutive activity of receptor tyrosine kinase and, in turn, rapid proliferation of 

mutated cells. Another way in which tyrosine kinases become over-expressed or 

abnormally expressed results from autocrine-paracrine signaling. Essentially, this 

feedback loop becomes overstimulated and there is over-expression of the ligand [21]. 

A mutation present in about 40 percent of gliomas lies in the epidermal growth factor 

receptor (EGFR). Although there are numerous mutations present in this type of tumor, 

this specific one is known to enhance tumorigenesis in humans as a result of 

amplification. Additionally, it is believed to be a biomarker of resistance in certain types 

of tumors. In terms of tumor development, EGFR functions in a signaling cascade which 
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regulates the activation of genes within the nucleus important for cell differentiation, 

proliferation and survival [28].  

 

 

 

 

 

 

 

 

 

 

 

When a 

ligand attaches to the EGFR, EGFR protein dimerizes and activates the receptor complex, 

beginning the signaling cascade. Two important pathways, PI3K and RAS-MAPK are 

modulated via a downstream signaling cascade by EGFR. These both function to promote 

cell proliferation, metastasis and the inhibition of programmed cell death. Therefore, 

amplification or mutations within this gene can have cancerous effects [32]. The reason 

Fig. 3 EGFR regulates numerous pathways and subsequently, 
many major cellular processes. 
(https://www.sinobiological.com/pathways/egfr-signaling-
pathway) 
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that EGFR is important to this study is the fact that many of the drugs tested are known 

EGFR inhibitors. EGFR inhibitors work to block this protein’s activity and slow the 

proliferation of cancer cells. 

Promising Drugs Identified 

Saracatinib is an oral chemotherapy drug used for the treatment of chronic 

myeloid leukemia due to its action as an Abl and Src inhibitor. It was developed by 

AstraZeneca and is approved by the FDA. These two protein kinases are frequently 

overexpressed in leukemia cells. This drug is also being tested for the treatment of 

various bone cancers such as osteosarcoma because it is known to inhibit Src kinase-

mediated osteoclast bone resorption [16]. The role Saracatinib plays in modifying various 

cellular processes is still being investigated. For example, it was recently discovered that 

Saracatinib inhibits the Fyn Kinase as well, which also falls into the family of Tyrosine 

kinases and is a known oncogene. Due to the fact that Fyn mediates beta-amyloid 

toxicity, Saracatinib is being tested as potential treatment for Alzheimer’s disease [34]. 

For the purposes of this experiment, Saracatinib was tested for its effect on 

gliomas. In one study, it was found that SRC activity is increased in GBM brain samples 

as compared to healthy brain tissue. Interestingly, the rise in activity is not due to 

mutations or overexpression, but rather as a result of higher levels of growth factor 

receptors on the surface of the cells. Another reason for this amplification is the 

activation of integrins which in turn activate SFKs. SFKs function as tyrosine kinases and 

mediate signaling within the cell. According to various GBM cell lines, the dysregulation 

of SFK affects cell adhesion. SFK dysregulation is also believed to play a role in cancers 



Alleman 7 
 

that metastasize to the brain. In studies where SRC was inhibited, GBM, in addition to 

numerous other types of cancers, exhibited lower levels of cell proliferation. This finding 

points to the role that an SRC inhibitor, such as Saracatinib, may play in preventing the 

proliferation of cancerous cells within the brain [2]. 

Gefitinib (brand name:Iressa) is also approved by the FDA to be used for the 

treatment of various cancers, specifically those affecting the breast and lung. It was also 

developed by AstraZeneca as a Tyrosine Kinase inhibitor [18]. Gefitinib inhibits EGFR 

by selectively binding to its domain, therefore interfering with autophosphorylation  and 

disrupting the signaling cascade. This disruption leads to decreased cell proliferation and 

increased rates of apoptosis. Additionally, Gefitinib plays a role in preventing 

angiogenesis, which is the growth of new blood vessels. Tumors responding positively to 

this drug may become less vascular. 

Fig. 4 SRC mediates numerous cellular processes, including angiogenesis, 
survival, proliferation and motility. If dysregulated, this pathway can 
contribute to rapid division of cancerous cells, tumor development and 
metastasis. 
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In a study done in 2018, GBM patients with either an EGFR mutation, PTEN 

mutations or both upon biopsy were treated with Gefitinib. Although side effects were 

common, patients treated with Gefitinib fared better than others. EGFR+ve/PTEN–ve 

patients’ survival rates were significantly higher after being administered 250–500 

mg/day of the drug over a span of several months. After tumor resection, several patients 

with remaining tumor had stable scans or shrunken tumors after taking Gefitinib [4]. 

Another study, focusing on recurrent gliomas suggests that Gefitinib in combination with 

other chemotherapeutic drugs may target EGFR mutations, improving patient survival. 

However, this same study discussed the need for further research into this drug and the 

pathways it may affect in order to target specific mutations [24]. 

Fig. 5 The process of angiogenesis 
increases blood supply to tumors 
and affects tumor growth. Drugs 
that inhibit angiogenesis may 
shrink tumors due to decreased 
blood supply and subsequent 
hypoxia. Unfortunately, tumors 
can become resistant to these 
efforts and continue to grow. 
(https://www.cell.com/trends/canc
er/fulltext/S2405-8033(16)30185-
6) 
 

Fig. 6 When Gefitinib binds to the receptor, it 
can inhibit numerous cellular processes, 
including cell proliferation, invasion, 
angiogenesis, metastasis and the inhibition of 
apoptosis. All of these actions can have anti-
cancer effects by preventing the development 
and migration of cancer cells. 
(https://err.ersjournals.com/content/19/117/186
) 
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Genistein is a phytoestrogen that exhibits anti-cancer effects. Genistein is 

commonly found in soy and in countries with soy-rich diets, people are less likely to 

develop breast or prostate cancer. Although its exact mechanism is unknown, the 

chemical is believed to target MAPK and  PI3K/Akt (important targets for GBM therapy) 

pathways among a few others [29].  

In one study involving GBM and medulloblastoma (brain tumor located in the 

medulla, typically a childhood cancer), Genistein was found to arrest cell growth in 

cancerous cells. The growth arrest happened during the transition from G2 to M stages of 

the cell cycle, which halted mitosis. The drug also inhibited TR- and TERT mRNA, 

which decreased telomerase activity. Telomerase lengthens telomeres, preventing 

degradation of the chromosome. Even though Genistein damaged the DNA in cancer 

cells and arrested growth, it did not induce cell death [12]. Therefore, the addition of 

radiation therapy or another chemotherapeutic agent known to induce cell death may be a 

more useful approach than just the treatment of Genistein alone. In a separate study using 

head and neck cancer cell lines, Genistein was found to arrest the cell cycle by 

upregulating Bax (pro-apoptotic agent) and p21(regulator of the cell cycle). This 

mechanism helps prevent the transition to the M phase of the cell cycle as well [3]. 

Fig. 7 Genistein can inhibit 
dysregulated cellular processes 
that lead to the development of 
tumors. It does this by binding to 
ER-B receptors and altering the 
signaling cascade. 
(https://www.sciencedirect.com/s
cience/article/pii/S222541101630
0827) 
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Ibrutinib (brand name: Imbruvica) is an inhibitor of Bruton’s Tyrosine Kinase, 

marketed by Abbvie (previously Pharmacyclics LLC). It is used for the treatment of 

white blood cell disorders such as B-cell lymphoma, chronic lymphocytic leukemia, 

mantle cell lymphoma and Waldenstrom macroglobulinemia. Bruton’s Tyrosine Kinase 

(BTK) operates in a pathway that regulates B-cell proliferation [14]. When mutations 

occur in BTK that cause upregulation of the pathway, this can lead to the survival and 

division of cancerous cells. The binding of Ibrutinib to BTK inhibits NFκB DNA 

binding. This in turn decreases cell proliferation, DNA synthesis and cell survival. In 

experiments using models where BTK is knocked down in mantle cell leukemia cells, the 

NFκB pathway is inhibited, therefore decreasing these cells’ ability to continue to grow 

and migrate [1]. 

 In terms of GBM, Ibrutinib has shown some promise in overcoming therapy 

resistance by inhibiting BMX-STAT3. This receptor is known to mediate the activity of 

STAT 3, which is a transducer needed for the maintenance of glioma stem cells. These 

stem cells are thought to be instrumental to the tumor’s ability to resist therapy, whether 

it be chemotherapy or radiation therapy. Inhibition of this pathway by Ibrutinib decreased 

gliomas stem cell- induced tumor progression/growth and in turn, was able to shrink 

tumors in GSC-derived orthotopic xenografts [27]. Case Comprehensive Cancer Center is 

currently conducting a clinical trial involving the use of Ibrutinib with Temozolomide 

(chemotherapy commonly used to treat GBM) along with radiation therapy, in hopes of 

decreasing the growth of these malignant cells [19]. 
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Apatinib, also called rivoceranib, is sold under the brand name Aitan by Elevar 

Therapeutics and was originally developed for the treatment of gastric cancers. Its 

efficacy is currently being studied in a clinical trial for patients with either advanced or 

metastatic stomach cancer across twelve different countries. It has also shown some 

promise for in the treatment of hepatocellular carcinoma, colorectal carcinoma and 

adenoid cystic carcinoma [7]. Apatinib is a small molecule and is taken orally in order to 

inhibit vascular endothelial growth factor receptor-2. VEGFR-2 has angiogenic effects 

because of its autophosphorylation at its kinase-insert region and carboxy terminal tail. 

The process of angiogenesis is an important step in the development of solid tumors, so 

inhibiting this mechanism may slow or stop the growth of tumors.  

 

Fig. 8 Ibrutinib binds to BTK, inhibiting the 
pathway important for B-cell proliferation, 
differentiation and survival.( 
https://clincancerres.aacrjournals.org/content/20/
21/5365) 

 

https://clincancerres.aacrjournals.org/content/20/21/5365
https://clincancerres.aacrjournals.org/content/20/21/5365
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Since Apatinib has shown to inhibit VEGFR-2 and subsequent downstream 

phosphorylation, it was used in this screen, as angiogenesis is a driver of brain tumor 

growth. In fact, gliomas are the most angiogenic of all cancerous tumor types. In gliomas, 

this mechanism is both hypoxia- dependent and independent, so targeting genes 

associated with hypoxia, in this case VEGF, may be a useful therapeutic approach. 

Furthermore, stem cells sampled from gliomas tend to have significantly higher VEGF 

levels, which is hypothesized to be the reason behind the high vessel densities measured 

in gliomas [23]. In one study, Apatinib was paired with Temozolomide and administered 

to patients with recurrent GBM. Even though the disease control rate was 90%, the 

median overall survival was still less than one year (nine months) [36]. 
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2. Materials and Methods 

Drosophila with UAS PtenRNAi and UAS RasV12 mutations were crossed with each 

other in order to create a new stock [UASptenRNAi; UASRasV12]. Female virgins from this 

stock (as denoted by meconium in the abdomen) were crossed with males from the repo-

Gal4 UAS-GFP stock. Virgins were collected twice a day, once in the morning and then 

approximately four hours later. Depending on the amount of flies available, they were 

placed in the same vial at a ratio of three males to six females or five males to ten 

females. These flies were placed in a box the incubator regulated at 24 degrees Celsius. 

Each morning, the flies from all stocks were flipped into new vials and labeled and dated 

accordingly. The PtenRNAi;RasV12 and repo-Gal4,GFP stocks were stored at room 

Fig. 9 When VEGFA binds to VEGFR, a cascade is 
initiated, leading to the development of new blood 
vessels. This allows for the continued growth of the 
tumor. Binding of Apatinib to VEGFR-2 prevents 
angiogenesis. (https://www.wjgnet.com/1948-
5182/full/v12/i10/766.htm) 
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temperature, while the glioma cross was maintained in the 25oC incubator during the 

course of the study.  

The Tyrosine Kinase inhibitors were added to vials containing only the fly food (the 

same type of food present in the vials of all the stocks). This was performed by a graduate 

student to ensure that the technique was done properly and safely. The drugs were added 

to the vials at two different concentrations: 10uM and 300uM. Four separate vials were 

prepared for the 10uM concentration and four for the 300uM concentration. These vials 

were prepared either the day of or a few days before the addition of the larvae, and then 

stored in the lab refrigerator immediately. The identity of each drug was unknown to the 

students and rather denoted by letters and numbers. 

The larvae that were added to the vials containing the drug came from the repo GFP 

stock and the glioma stock. Approximately 20 larvae from the repo GFP stock were 

added to the 10uM drug vials and then 20 larvae were added to the 300uM vials. The 

same thing was done for the glioma stock as well. Additionally, when larvae were not 

crawling on the sides of the vial, a small amount of water was added to the vial to get the 

larvae to come up. When collecting the glioma cross, only the non-TM6B larvae were 

added to the drug vials, meaning these larvae were “non-tubby.” All vials were labeled 

according to the drug, the concentration and which stock was placed in the vial and dated. 

These vials were then placed in a separate container in the incubator and with one repo 

GFP at 10uM and one glioma cross at 10uM left to develop for five days, one repo GFP 

at 10uM and one glioma cross at 10uM left to develop for six days, one repo GFP at 

300uM and one glioma cross at 300um to develop for five days and one repo GFP at 

300uM and one glioma cross at 300uM to develop for six days. 
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After either five or six days had passed, according to how the vials were labeled, 

larvae were removed and dissected. The goal was to remove enough larvae in order to 

have five brains to mount on a microscope slide. Sometimes, there were no larvae 

available and other times, water had to be added in order for larvae to come up. After 

enough larvae were collected for dissection, they were placed on dishes in a solution of 

PBS. One five and one 55 forceps were used to pull the larvae in half to remove the head 

because only the brains were used for this study. 

Once the larvae had been pulled apart, the portions containing the brains were placed 

in an Eppendorf tube containing 150uL of PBS and 50uL of 15% PFA (well mixed) and 

left to sit upright for 20 minutes. Next, 1000uL of PBST was added to the Eppendorf tube 

and it was placed on a rotator for ten minutes. Then, most of the liquid was suctioned up 

using a vacuum, leaving the sample at the bottom and 1000uL of PBST was added again 

into the tube. It was then placed back onto the rotator for another ten minutes. This 

process of vacuuming, putting more 1000uL of PBST back into the tube and placing on 

the rotator was repeated two more times.  After the final rotation step, the liquid was not 

vacuumed up so that the sample did not dry up. 

Once the sample had been properly washed, a slide was prepared for each set of 

samples, which was properly labeled and dated. The tip of a pipette was cut in order to 

suction up the sample and place it onto the slide. Then, using two 55 forceps, the sample 

was delicately pulled apart and the debris was washed off using a Kim wipe so that only 

the ventral nerve cords and the brain lobes attached were left. Once all the brains were 

prepared and debris wiped away, they were pushed to the side of the slide so they could 

eventually be mounted in the center. While dissecting the brains, it was important to keep 
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the sample moist with PBST so it did not dry out and no longer be usable. In the center of 

the slide, 10-20uL of Vectashield (depending on how many brains were dissected) was 

added and the samples were lined up, one by one in the center. Excess Vectashield was 

wiped away using a Kim wipe. Then, a slide cover was slowly and carefully lowered onto 

the sample and held down by painting the edges with a small amount of nail polish. The 

slides were then placed in a folder in the freezer for storage.  

The final step of this process involves imaging the brains using fluorescent 

microscopy. Each slide was placed onto the slide mount and put into focus on each 

individual brain. The images were saved to a flash drive and placed in a file to study 

further. The slides were then put back into the folder and placed into the freezer. The 

images were analyzed according to glia cell density and the shape of the brain. 

 

3. Results 
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The following images were taken using fluorescent microscopy. The green 

fluorescence indicates glia, as the GFP makes these cells glow green using this 

imaging technique. Not all images of samples are included, but rather, images that 

clearly exemplified the effects of the various drugs. In all cases an example of the 

most represented effect is presented. 

 

  

  

  

 

 

 

 

 

 

 

 

 

 

Fig. 10  Image A is a normal brain in which all glia are marked by 
repo GFP, with the optic lobes that connect together to form the 
Central Brain (CB) and the ventral nerve cord (VNC). Image B 
depicts a brain from the glioma cross. There is an increase in glia 
density and the lobes are deformed. 
 

Fig. 11 Glioma cross day 6 treated with Saracatinib 
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Fig. 13 Glioma cross day 6 treated with Genistein 
 

Fig. 12 Glioma cross day 5 treated with Gefitinib 
 

Fig. 14 Glioma cross day 6 (left) and day 5 (right) treated with Ibrutinib 
 

Fig. 15 Glioma cross day 5 (right) and day 6 (left) treated with Apatinib 
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4. Discussion 

Overall, there was a range of effects seen in the images, indicating that the drugs 

had differing strengths of inhibition. The first set of images showing the repo GFP brain 

along with a glioma cross brain not treated with any drugs indicates the ways in which 

the tumor changes brain structure. The tumor mishaped the brain lobes and ventral nerve 

cord and also lead to an increase in glia density. This is because of the rapid division of 

cancer cells.  

Some of the larvae that were fed the drugs did not survive, indicating that the drug 

given at that concentration was too lethal. Additionally, some larvae did not come up 

until day six or even the seventh day. This indicates that the drug may have slowed 

normal larvae growth and development. Further testing is needed to understand and 

quantify this finding. 

The tumors treated with Saracatinib resulted in brains with decreased tumor sizes. 

These brains were also not deformed, but rather had wider ventral nerve cords as 

compared to the repo GFP brain. Additionally, there was still a high concentration of 

glia, specifically in the two lobes. Saracatinib shows promise in terms of reducing tumor 

size. This effect may be due to Saracatinib’s ability to inhibit SRC as well as Fyn. 
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Tumors treated with Gefitinib had some of the most significant effects. These 

brains closely matched the shape of the unaffected brain, with clearly defined lobes and a 

ventral nerve cord. These structures did not seem to be overly enlarged or deformed due 

to tumor infiltration. However, there is still an increase in the glia density in both images. 

Since Gefitinib is able to bind to and inhibit EGFR, this drug could have played a role in 

slowing the division of cancerous glia or decreased cell proliferation. 

Genistein showed promise as well, due to the decreased glia count in the outer 

portions of the brain lobes. The brains were also not as malformed as the untreated 

glioma brains. Genistein’s ability to target MAPK and  PI3K/Akt pathways may have 

caused this inhibition because these pathways are not well-regulated in glioma cells. 

Ibrutinib also seemed to have a significant effect on the appearance of the brains, 

since they were near normal size and shape as compared to the unaffected brain image. 

Furthermore, the brain lobes and ventral nerve cord are clearly defined. Out of the the 

drugs studied, Ibrutinib seemed to have the strongest effect on glia cell count. Ibrutinib 

targets and inhibits Bruton’s Tyrosine Kinase, which could be the reason behind the 

decreased tumor size and its lessened effects on the brain. 

The brains treated with Apatinib were not as deformed as the untreated brains. 

However, the ventral nerve cord was not shaped like the control  repo GFP brain. There 

was also a high density of glia throughout the brain, indicating that the cancer cells were 

dividing quicker than healthy glia. These effects may be due to the fact that Apatinib is a 

known VEGFR-2 inhibitor and the pathway associated with this receptor is dysregulated 

in GBM. 



Alleman 21 
 

To summarize, these five drugs all had anti-cancer effects, as they shrunk the 

tumors and/or made the brain appear more like the repoGFP brain. However, the degree 

to which these drugs worked differed across the samples, indicating that some drugs were 

more effective than others. Further study and a deeper analysis of these drugs at varying 

concentrations is necessary in order to definitively conclude which ones may be useful in 

the treatment of human brain cancer.  

5. Future Directions 

First of all, the next step of this study involves testing the rest of the drugs. This 

will allow for more possible treatment options to study. Once all of the drugs have been 

tested, it is important to determine the EC50 of the ones found to be effective in 

decreasing tumor progression. This value will determine the best concentration to use the 

drug. Another possible next step includes using various drugs in combination with either 

each other or other drugs already used for the treatment of gliomas. This could more 

closely mimic treatment protocol for glioma patients, as chemotherapy regimens often 

entail a cocktail of powerful drugs. Down the road, the use of another model organism, 

such as mice may be useful to model tumors as well and test the anti-angiogenic effects 

of some of the drugs. This could also be a useful way to test a drug’s ability to cross the 

blood-brain barrier. 

 

 

The Role of p53 and E2F Mutations in Glioma Progression and Therapy Resistance 
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 Gliomas are among the most deadly types of cancers, with the median survival 

after diagnosis being just 12-15 months. Although there are numerous types of gliomas 

that occur in adults and children, glioblastoma multiforme (GBM) is typically the most 

lethal. Patients diagnosed with this type of brain cancer often experience symptoms such 

as dizziness, headaches, nausea, seizures and a multitude of other neurological issues. 

Once diagnosed, the typical course of treatment includes a grueling regimen of surgery, 

chemotherapy and radiation therapy. The chances of a patient surviving even one year 

after diagnosis, in spite of these rigorous treatments is only 25%. The five year survival 

rates are even bleaker, as only 5% of patients will live past this point [31]. Even after a 

patient receives all of these therapies, the recurrence rate for GBM is extremely high. 

Oftentimes, the tumor recurs in the same location it originated in and is even more 

aggressive. When a patient relapses, there are even fewer therapeutic options, with most 

being experimental and eventually, the disease runs its course. Because of the devastating 

effects of this disease, it is critical to pursue research endeavors that will eventually 

benefit patients and improve survival odds. 

Gliomas are solid primary brain tumors which arise from glia. Glia constitutes the 

connective tissue of the brain. These cells were originally thought to be the “glue” 

holding the brain together, although research has shown that glia are much more than just 

glue. Scientists are still working to grasp the roles of glia, which include modulating 

neurotransmission and even performing immune functions [33]. Like any other cancer, 

gliomas arise due to the rapid division of mutated cells and in this case, these cells are 

glia. The exact causes and mechanisms behind these mutations are unknown. 

Furthermore, the complete range of mutations found in gliomas are not fully understood. 
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However, the potential that certain mutations have to propel uncontrollable cell division 

is no secret. What were once a few unhealthy cells, can eventually form a large mass and 

kill a person within a matter of months. 

The reason that these tumors are so deadly is the fact that they are often resistant 

to current therapy options. Therapy resistance refers to the ability of a cancer to no longer 

respond to treatments, either chemotherapy or radiation therapy, and continue to progress. 

Although the exact process of how cancer cells develop resistance is unknown, there are 

many studies which point to various mechanisms playing a role. Generally, there are 

changes happening at the genetic level in the cells as well as the tumor 

microenvironment. GBM cells are heterogeneous by nature, which points toward the cells 

having developed mechanisms to evade the body’s way of destroying mutated cells. This 

heterogeneity results from the selection/adaptation processes happening in developing 

cancers [38]. 

Another contributor to therapy resistance in GBM is the different morphology of 

endothelial cells lining the blood vessels providing blood flow to the tumor. Interestingly, 

brain tumors have significantly higher blood vessel densities as compared to tumors in 

other parts of the body. Some types of brain tumors have blood vessel densities which are 

50% higher than tumors in other locations. The mutated endothelial cells in GBM are 

able to migrate quicker and have a higher number of growth factors, which allow them to 

continue to support the growing tumor. The fact that these endothelial cells contain 

abnormal centromeres is believed to be a key player in preventing a proper response to 

therapy [37]. 



Alleman 24 
 

These same types of cells compose the blood brain barrier, which poses its own 

difficulty in delivering drugs to the brain. Although this mechanism works to protect the 

brain from infections and toxins, it also prevents the entry of many chemotherapeutic 

agents into the brain environment. New advances in nanotechnology aim to evade the 

blood brain barrier in order to deliver drugs to the brain, not only for the treatment of 

cancer, but many other neurological conditions [13]. The blood brain barrier is disturbed 

in GBM patients, which causes edema and increased pressure in the brain, which has the 

potential to damage remaining healthy tissue. Issues with the polarity of astrocytes are 

hypothesized to be reason that the blood brain barrier tends to be disturbed in cases of 

GBM [37].  
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One major reason that these tumors are often resistant to therapies lies within the 

cancer cells themselves. There are a plethora of oncogenic mutations causing these cells 

to proliferate and divide uncontrollably. There are many known mutations, such as EGFR 

and IDH known to play a role in therapy resistance. EGFR, which has amplified activity 

in 40-60% of GBM cases, may respond positively to chemotherapies that target this 

mutation initially. However, due to unknown mechanisms, new mutations arise which 

make the cancer cells resistant to this therapy, causing the tumor to grow yet again. 

Patients with IDH mutations tend to fare slightly better than those with IDH wildtype. 

Although there are multiple types of IDH mutations, they eventually result in an increase 

in onco-metabolite d-2-hydroxy-glutarate, which in turn leads to oxidative stress and 
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eventually the damage of once healthy DNA [17]. Wildtype IDH is a marker for 

resistance to chemotherapy, as IDH mutants have shown reduced proliferation as 

compared to the wildtype [35]. In terms of radiation therapy, one mutation that 

contributes to this is ASAH1, which becomes upregulated after being exposed to 

radiation treatments, aiding in the proliferation of cancerous cells [17]. 

This project hinges on the fact that there are numerous mutations within GBM 

cells that make the cancer both difficult to treat and resistant to current therapies. This 

endeavor involved testing the effects of a p53 mutation and an E2F mutation on glioma 

progression. Certain p53 gain of function mutations result in a decreased response to 

Temozolamide (common GBM drug) and therefore, may be a marker for therapy 

resistance [20]. 

The reason for incorporating an E2F mutation into this experiment is because E2F 

operates in the same pathway as p53 and helps to regulate its activity. The way in which 

this experiment addresses the issue of therapy resistance is by testing two mutations, p53 

and E2F, as possible contributors to the aggressive nature of the tumor. Subsequently, 

running models with these mutations through a slew of different chemicals may identify 

possible drugs which target them. The overarching goal of this project is to gain a better 

understanding of the cellular and biochemical defects occurring in these tumors in an 

effort to eventually improve outcomes for patients. Once targets are identified, treating a 

patient with drugs that combat certain mutations can more effectively treat their cancer. 
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When functioning normally, the TP53 gene (on chromosome 17) acts as a tumor 

suppressor and is nicknamed the “guardian of the genome.” TP53 works by coding for 

p53 proteins which bind to DNA, targeting the CDKN1A gene (on chromosome 6) to 

make the protein p21. This protein complexes with cdk2, which is a protein that 

stimulates cell division. Once this complex forms, the cell does not move forward in 

mitosis, essentially halting cell division [15]. This includes stopping division of mutated 

cells which may be cancerous. An issue with this pathway can lead to a disastrous 

hallmark of cancer: uncontrollable division of mutated cells. 

  

A mutation within p53 can have serious consequences for a patient, because it 

disrupts this important cellular process. A p53 gene mutation leads to the translation of 
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mutated p53 proteins. Not only do these proteins improperly bind to DNA and fail to 

control cell division, but they also develop oncogenic properties. High levels of these 

proteins are often found in cancer cells of various types. When functioning as an 

oncogene, p53 helps sustain the survival of mutated cells. Therefore, mutations which 

inactivate p53 contribute to tumorigenesis and eventually metastasis in many types of 

cancers. Interestingly, mutant p53 can inactivate wildtype p53, although not always 

completely. The dominant negative mechanism of mutant p53 renders the healthy allele 

unable to perform its usual functions [25]. The exact cause of these mutations in GBM 

patients remains unknown. 

Evidence for the importance of p53 is seen in people without two working copies 

of this gene. Individuals with Li Fraumeni syndrome have only one functional copy of 

p53 inherited from one parent. This causes a predisposition to cancer because, if the only 

copy of p53 is damaged, the affected cells lose their ability to properly regulate cell 

division. This is why nearly half of all people with Li Fraumeni syndrome will develop 

cancer before the age of 30 and 80% will be diagnosed before the age of 60. One organ in 

which people with Li Fraumeni syndrome commonly develop cancer is the brain, further 

implicating the way p53 mutations cause progression of brain tumors [30]. 
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Deregulation of the p53 pathway is seen in 84% of GBM patients, indicating the 

vast impact of p53 mutations in the development and progression of GBM. Evidence of 

p53 mutations in astrocytomas and low-grade gliomas suggest that these mutations are 

early events in tumorigenesis. In addition to damaging a major apoptotic pathway, p53 

point mutations promote the gain of function of oncogenic variations of p53 proteins. 

This is what promotes malignancy in gliomas, since they begin to work as transcription 

factors [39].  p53 mutations are thought to be the reason behind certain gliomas’ 

resistance to Temozolamide. This is because inactivation of p53 promotes the activity of 

the DNA repair enzyme, MGMT [8]. Furthermore, p53 promotes inflammation in 

gliomas, making patients’ prognoses even more dismal [9].Because of these events, it is 
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necessary to identify treatments that can either destroy mutated p53 or help restore its 

original tumor suppressor abilities.  

 

It is important to recognize that p53 does not operate independently, but rather is 

mediated by E2F. One author described the relationship between p53 and E2F as 

“partners in life and death” [22].  The Rb–E2f and MDM2–p53 pathways are deregulated 

in a majority of tumors and operate independently. However, when E2F and p53 function 

as transcription factors, they facilitate crosstalk between these two pathways [22]. When 

E2F1 is overexpressed, it activates p53 in response, which in turn begins the signaling 
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cascade which leads to apoptosis [11]. Hence, E2F acts as a tumor suppressor and is an 

important factor to consider when studying p53. 

E2F has been shown to induce apoptosis in p53-dependent and independent 

manners. Although the exact mechanisms for p53-dependent apoptosis are not fully 

understood, there are several theories. One such theory suggests that by targeting the 

p14(p19)/Arf tumor suppressor gene, E2F induces stability of p53. Further studies have 

shown that E2F still affects p53 in the absence of Arf, suggesting there are other routes in 

which E2F functions. Another theory proposes that, in response to DNA damage, the 

cyclin A-binding domain present in E2F interacts with p53. This interaction stabilizes 

p53. There are also two hypotheses for the way in which E2F triggers apoptosis 

independent of activity with p53. E2F is thought to accomplish this by either interacting 

with p73 (a transcription factor, part of the p53 family) or by working with the tumor 

necrosis factor [5,26].  
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The transcription factors associated with E2F work to regulate genes important 

for various stages of the cell cycle, specifically, the G1 and S phases. This acts as a way 

to control cell division. When E2F genes are improperly expressed, cells continue to 

enter the S phase, unchecked and then begin to divide [10]. E2F has dueling abilities to 

both activate and repress transcription, so when mutated, it can function as an oncogene. 

When not mutated, E2F1 plays a role in responding to damaged DNA, as heightened 

levels of this protein have been detected in cells that had been given chemicals known to 

cause DNA damage [5]. Although the direct cause of mutations in the E2F family of 

genes in GBM is not known, E2F is regulated by the pRB family of proteins [6]. 

Therefore, dysregulation of this pathway may be partially to blame for the oncogenic 

effects of E2F. 

 Due to the well-established relationship between E2F and p53 and their known 

role as oncogenes, this project seeks to understand how mutations in these genes 

contribute to gliomas. The plan for this project was to induce both of these mutations into 

Drosophila in addition to the tumor-driving PtenRNAi ; RasV12 mutation used in the drug 

screen. In order to induce a p53 mutation, a dominant negative approach was put into 

place. The E2F mutation was to be added by using an RNA interference approach to 

knock-down dE2F1. By creating a triple mutant, expressing these specific mutations, we 

would have a more complete model of human brain tumors. Testing how these tumors 

grow and progress would give insight into the way these mutations affect this process. 

Testing these mutants with various Tyrosine Kinase inhibitors would assess them for 

therapy resistance and hopefully identify agents which target these mutations. 



Alleman 33 
 

 Although the clear goal was established and a detailed plan of how to achieve it 

was devised, it was not fully realized. Due to contaminated fly food, many stocks died. 

At one point the project was restarted because the stocks did not survive. Once the project 

got back on its feet and started moving smoothly, the COVID-19 shutdown stopped all 

undergraduate research for the spring 2020 and fall semester. Therefore we have 

preliminary data to present, but no information regarding the tumor progression data and 

response to various drugs.  

Results:  

Fig.19 

 

Fig. 20
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Even though this project remains unfinished, preliminary data points to this 

approach serving as a viable method for creating the triple mutants. The balancer stocks 

were healthy and viable. We are hopeful that in the future, other undergraduate lab 

members will be interested in understanding the role of p53 and E2F in gliomas and pick 

up where we left off.  
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