Design and Prototyping of a 3D Shape Changing Mechanism
Design and Prototyping of a Planar Shape Changing Mechanism with Layering Issues
Joshua Nieman
Advisors: Dr. Andrew Murray & Dr. David Myszka

Background

Shape Change
Shape-changing mechanisms are composed of a set of rigid links and revolute joints and have the capacity to morph between shapes when actuated.

Layering Issues
Layering is the ordering of links based on the planes they reside in.
- With little study to how to layer, there are too many possibly outcomes to study.
- This is a major problem in shape change mechanisms since they are designed as 2D systems and converting to 3D mechanisms is complex.

Prototype Challenges
- Low profile connections necessary to reduce total weight: Retaining rings implemented.
- Rigid material required to distribute forces between layers: Acrylic was chosen since rigid and visually appealing.
- High precision hole location and link sizes are required: All links were laser cut.

Mechanism Complexity Increases with Number of Segments

<table>
<thead>
<tr>
<th>4 Segment</th>
<th>5 Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>More segments make a closer profile match but creates more links and makes mechanism more complex and much harder to layer</td>
<td></td>
</tr>
</tbody>
</table>

Prototypes

- Material was not rigid enough which caused twisting in multi-plane connections during actuation.

Link Layering Heuristics Created

- Prioritized layering:
 - Important links were prioritized to be in top, since they were required to be seen.
 - Other links were then layered based on their connection to important links.

- Layering focus centered on region and phase:
 - Layering is simplest to overcome when in 1 stationary position.
 - The most complex region during the entire cycle was layered first.
 - Then studying the movement of the mechanism, the collisions altered the layering.

- Multi-plane connections:
 - Connections allowing connected links to not be required to reside on adjacent planes.

Final fully layered mechanism side view.