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Abstract 
The conversion of CO2 into valuable feedstocks, such as high energy sugars would create paradigm shifting 
technologies for applications on earth and for interplanetary exploration.  Microbes and microbe consortia 
may be one way to accomplish this conversion.  Approximately 70% of the Earth’s microorganisms live in 
the dark marine biosphere (DMB).  The DMB, which covers more than two-thirds of the Earth, is known as 
the most isolated region of the Earth’s largest CO2 sink.  Despite its role in reducing CO2 and its vast 
majority of microorganisms, only about 5% of the sea floor has been explored.  Due to the limited 
knowledge of the DMB and its microorganisms it, it is one of the best resources in discovering new dark 
carbon fixation pathways and carbon fixing microorganisms.  We will explore how some DMB 
microorganisms may use urea as a nitrogen source for fixing carbonate.  To start, microbes found in 
sediment extracted from the sea floor of the Gulf of Mexico were grown, in 96-wellplates, under varying 
concentrations of HCO3

-, urea, and acetate.  The growth of the microbes was monitored using OD600 
readings with a plate reader.  Consortia which appeared to show growth were transferred to 10mL of the 
successful media and continued to be monitored.  Growth was confirmed by using IR spectroscopy and 
successfully isolating DNA from the consortia.  Following confirmed growth, one successful consortia, 
grown with a media containing 10mM HCO3

-, 10mM urea, and 1mM acetate under anaerobic conditions 
with a pH of 7.6 and a temperature of 4˚C was followed, using iron chromatography, in a 72-day 
experiment to determine how the levels of HCO3

-, urea, and acetate changed with time and the success of 
carbonate fixation within the consortia.  Individual microbes from the consortia and their DNA are also to 
be isolated. 
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Introduction 
In order to sustain extraterrestrial life in outer space or on another planet, specifically 

Mars, food, medicine, fuel, and more will be essential.  Many of these necessary 

products, also including plastics and adhesives, are composed primarily of carbon, 

hydrogen, oxygen, and nitrogen atoms [8].  These essential molecules can be found in the 

form of CO2 and N2, in the Martian atmosphere, and H2O, in the surface water on the 

planet, and could ideally be manipulated to help produce the desired and necessary 

products [5].  Some products may be produced using physicochemical methods or 

photosynthetic organisms, such as plants and algae, but heterotrophic microbial 

production systems may prove to be the most effective approach to producing a varied of 

desired products [2].  On Earth, bio-products are generated rapidly by using heterotrophic 

microbes with high concentrations of readily metabolized organic substrates [3].  The rate 

and efficiency of a microbial system can be based on the type of organic substrate used.  

Typically, sugars, such as D-glucose, which are plentiful in energy and carbons, are the 

chosen substrate for commercial terrestrial microbial production systems and 

experimentation [4].  Less complex sugars may also prove to be effective at supporting 

rapid rates of growths in these systems. 

 

If microbial bio-manufacturing platforms are to be used on Mars, or other planetary 

bodies, local materials must be used to produce the carbon substrates while on site, but 

this has its problems.  While on Earth, sugar-based substrates can be made efficiently and 

inexpensively from plant biomass [7].  In space and on Mars these methods will not be 

accessible, and another approach will be necessary.  There are known processes, such as 

photo/electrochemical and thermal catalytic systems, which have proven to make smaller 

organic compounds and alcohols from CO2, which could be found in the Martian 

atmosphere and, as shown in Figure 1, is one of the major wastes not recycled during 

space travel.  However, these processes have not been developed enough to produce the 

more complex molecules, such as sugars, due to the expense compared to already 

successful terrestrial methods of producing sugars and a few technical challenges [6].  A 

new method, or perhaps a new microbe, may need to be discovered or researched further 
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to help produce these sugars efficiently enough to produce necessary products when 

exploring, or possibly inhabiting, new planetary bodies, such as Mars. 

 

 
Figure 1 Functioning of the environmental control and life support system on the International Space Station, where a 
major nonrecycled waste is Carbon Dioxide 

 

The dark marine biosphere (DMB) is an excellent place to begin searching for a 

microorganism, which can be used in these microbial biotechnology systems.  The DMB 

covers over two-thirds of the surface of the Earth and is home to approximately 70% of 

the Earth’s microorganisms.  It contributes immensely to Earth’s largest CO2 sink and is 

known as the most isolated region of it.  Despite the role it plays in reducing CO2 and the 

incredible numbers of microorganisms that are known to be there and likely even more 

living there unknown, very little of the DMB has been researched and discovered.  In 

fact, only about 5% of the sea floor has been explored [1].  Due to the limited knowledge 

of the DMB and the microorganisms it houses, it may prove to be one of the best 

resources in discovering new dark carbon fixation pathways and carbon fixing 
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microorganisms.  If discovered, these microorganisms may be researched and utilized to 

fix carbon from the Martian atmosphere to help produce useful carbon substrates for an 

effective microbial biotechnology system.  The goal of this project is to discover and 

identify a microbe consortium, from the DMB, which can effectively participate in 

carbon fixation under anaerobic conditions, using Urea as a nitrogen source.  Urea was 

chosen as the nitrogen source for this experiment because it would be easy to access in 

space, either in the form of slow-release formate urea fertilizers, or if necessary, through 

urine, which is how humans naturally expel excess nitrogen in the form of urea.  A 

proposed mechanism for how carbon fixation and ureolysis, the breakdown of urea, may 

be connected is shown in Figure 2. 

 
Figure 2 Possible mechanism to combine carbon fixation and ureolysis 

 

Methodology 
This project has had three separate phases.  In Phase I, different salt medias were made to 

determine the best environment to grow a microbe consortium with DMB sediment.  

Phase II included selecting successful medias to grow on a larger scale and to monitor 

further.  In Phase III, the most successful consortium was monitored even closer on a 72-

day experiment to monitor the fluctuating concentration of the salt media. 

 

For Phase I, the first step was to make well plates with solutions containing varying 

concentrations of urea, HCO3
-, and acetate.  The base for each solution was a modified 

ONR7A salt media, shown in Table 1.  Each well contained a version of the salt solution 

containing either 1 mM or 10 mM urea, 1mM or 10 mM HCO3
-, and 0 mM or 1 mM 
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acetate.  The well plate set-up and media formulations are shown in Table 2.  2 μL of 

sediment sample was loaded into each well, as well as 1 μL vitamin mix and 1 μL of an 

Fe2+ solution to help encourage growth.  Four well plates in total were created, two using 

a Modified ONR7A Salt Medium at a pH of 7.6 as a base, one to be held at 4˚C and one 

to be held at 27˚C, and two using a Modified ONR7A Salt Medium at a pH of 8.5 as a 

base, again being held at either 4˚C or 27˚C.  All well plates were held under anaerobic 

conditions, which was accomplished using an anaerobic chamber.  A plate reader was 

used to take OD600 readings every few days to monitor the growth of each sample. 

 

Modified ONR7A Medium**     

 Quantity Added Formula Weight Concentration (mM) 

Solution 1:      

NaCl  22.79 g  58.44 410.50 

KCl  0.72 g  74.55 10.17 

NaBr  83.00 mg  102.89 0.85 

NaHCO3  31.00 mg  84.01 0.39 

H3BO3  27.00 mg  61.83 0.46 

NaF  2.60 mg  41.99 0.07 

Na2HPO4 x 7 H2O  89.00 mg  268.07 0.35 

TAPSO  1.30 g  259.28 5.28 

H2O  500.00 mL    

Adjust to pH 7.6 or 8.5 with NaOH      

       

Solution 2:      

MgCl2 x 6 H2O  11.18 g  203.3 57.89 

CaCl2 x 2 H2O  1.46 g  147.01 10.45 

SrCl2 x 6 H2O  24.00 mg  266.62 0.09 

H2O  450.00 mL    

       

       

Autoclave the solutions separately.  
Solutions should be mixed after 

autoclaving when they have cooled 
to at least 50°C  

    

Table 1 Formulation of Modified ONR7A Salt Medium 
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Table 2 Formulation of each well media.  Wells of the same color contain the same formulation of media.  Media in 
columns 11 and 12 represent controls of medias in columns 1-6.  Medias in control wells were not given any sediment 
samples. 

Once growth was thought to occur, based on the OD600 readings of the well plates, 

Phase II was started.  100 μL of samples of apparent growing consortia were removed 

from their wells and transferred to vials containing 10mL of the successful media from 

their well plates.  The growth of each consortia, then continued to be monitored using 

OD600 readings, every few days.  Once a sample showed growth once again, a small 

amount of the sample was frozen, and some was used in DNA isolation to be sent in and 

analyzed.  One sample, growing with 10 mM urea, 10 mM HCO3
-, and 1 mM acetate, 

appeared to be thriving more so than the others.  This sample was held at a pH of 7.6 and 

a temperature of 4˚C. 

 

The successful sample was then used in Phase III.  This phase consisted of a 72-day 

experiment to monitor the concentrations of urea, HCO3
-, and acetate, and how they 

changed with time in hopes of observing carbonate fixation.  To conduct this, five serum 

bottles, each with 80 mL of the successful pH 7.6 media, were used.  Two of the bottles 

contained glass beads (to observe if any of the microbes in the consortium made a biofilm 

and if it affected carbonate fixation), two had no glass beads, and one served as a control.  

Two additional serum bottles, one with glass beads and one without, were also created to 
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be untouched throughout the experiment and to be used for DNA isolation.  These bottles 

were all stored under anaerobic condition at a temperature of 4˚C.  Every three days or 

so, 3 samples were taken from each serum bottle: 1 to be frozen, 1 to track the pH, and 1 

used in an IC reading to track concentrations.  The urea concentrations were also 

attempted to be tracked using a HPLC with a Urea column and a Urea Nitrogen 

Colorimetric Detection Kit.  At the end of the 72 days a sample from each of the 

undisturbed vials was used for DNA isolation to be sent in and further analyzed. 

 

Results and Data 
After Phase I, a total of 22 samples were removed from their well plates to be grown on a 

larger scale.  Thirteen were from a pH of 7.6, nine being held at 4˚ and four being held at 

27˚.  Nine were from a pH of 8.5, five being held at 4˚ and four being held at 27˚.  The 

media formulations resulted in apparent growth are shown in Table 3. 

 

Media [HCO3-] [Urea] [ Fe2+ ] [Acetate] pH Temperature 

1 1 mM 10 mM .0016 mM  7.6 4 

2 1 mM 10 mM .0016 mM  7.6 27 

3 10 mM 10mM .0016 mM 1 mM 7.6 4 

4 10 mM 10mM .0016 mM 1 mM 7.6 27 

5 1 mM 1 mM .0016 mM  7.6 4 

6 10 mM 1 mM .0016 mM 1 mM 7.6 4 

7 10 mM 1 mM .0016 mM 1 mM 7.6 27 

8 10 mM 1 mM .0016 mM  7.6 27 

9 1 mM 10 mM .0016 mM  8.5 4 

10 10 mM 10 mM .0016 mM 1 mM 8.5 4 

11 10 mM 10 mM .0016 mM 1 mM 8.5 27 

12 1 mM 1 mM .0016 mM  8.5 4 

13 10 mM 10 mM .0016 mM  8.5 4 

14 10 mM 10 mM .0016 mM  8.5 27 

15 10 mM 1 mM .0016 mM  8.5 27 

Table 3 Successful media formulations from well plates 



P a g e  | 7 
 

Of the 22 samples that were attempted to be grown on a larger scale, in Phase II, 9 

appeared to continue to grow.  These successful media were Medias 3 (three samples), 7 

(one sample), 8 (one sample), 9 (one sample), 10 (one sample), and 12 (two samples), as 

shown in Table 3.  DNA isolation was attempt on all 9 of these samples.  DNA was 

successfully isolated for 5 of them, including from two samples of Media 3, one from 

Media 9, one from Media 10, and one from Media 12. 

 

The most successful consortium was grown from Media 3 and moved on to Phase III.  

This sample was tracked in a 72-day experiment.  The IC results from the media 

throughout the experiment are shown in Figure 3.  The IC readings indicated that the 

acetate in the solution was diminished to 0 by approximately day 15 and the level of 

carbonate lowered throughout the 72 days.  The vials with and without beads seemed to 

show no significant difference.  Unfortunately, the levels of urea could not be shown with 

the IC data.  An HPLC ran with a urea column also failed to show the change in the urea 

levels of our salt solution.  A final attempt to monitor the Urea concentrations was 

attempted using a Urea Nitrogen Colorimetric Detection Kit.  The results of this test 

indicated that there was no significant change in the Urea concentrations throughout the 

72-day experiment.  The results of the Urea Nitrogen Colorimetric Detection Kit are 

shown in Figure 4. 

 

After the 72-day experiment, the five isolated DNA samples from Phase II, as well as 

DNA isolated from the end of the 72-day experiment, were sent in to be identified.  All of 

the isolated DNA came from consortia of bacteria, so many different bacteria were 

identified.  Most notably, there were five species in the 72-day experiment DNA that 

were not able to identified on a species level, indicating that some bacteria that has yet to 

be discovered may be present.  All bacteria, in all of the consortia, were determined to 

not be harmful. 
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Figure 4 Urea concentration throughout the 72-day experiment, as determined using a Urea Nitrogen Colorimetric 
Detection Kit. 

0

5

10

15

0 20 40 60 80

Ar
ea

 (µ
S*

m
in

)

Days

With Beads

Carbonate Acetate

0

5

10

15

0 20 40 60 80

Ar
ea

 (µ
S*

m
in

)

Days

Without Beads

Carbonate Acetate

0

5

10

15

0 20 40 60 80

Ar
ea

 (µ
S*

m
in

)

Days

Control

Carbonate Acetate

Figure 3 Results of Ion Chromatography for 72-day Experiment 



P a g e  | 9 
 

Discussion and Conclusion 
This is the very early stages of this area of research, so there are few definitive 

conclusions to draw.  Of the different medias that were successful there were no clear 

concentrations of HCO3
-, Urea, or Acetate that microbes from the sediment sample 

favored the most.  However, there was consistently more diversity and growth in 

microbes that were cultured at 4˚C instead of 27˚C, as well as at a pH of 7.6 instead of a 

pH of 8.5.  The 72-day experiment did not indicate enough change to determine if 

carbonate was being used as a sole carbon source or if/how the microbes were interacting 

with the urea present in the solution.  This could be due to the cells not growing at a high 

enough density, or for a long enough time, to consume a detectable amount of carbonate 

and urea.  In the future a longer, more in depth look at the microbe growth may be 

necessary.  Since there were many unidentified microbes, there is also future work that 

needs to be done to isolate and identify individual bacterial species.  Throughout each 

phase of this experiment, samples of successfully growing consortia were frozen in order 

to continue on with this experiment in many different ways in the future.  Ultimately, this 

research was successful in creating a solid base to add to in further investigations, when 

considering what will be necessary for planetary colonization. 
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