An Electrochemical Study of L-3,4-dihydroxyphenylalanine (L-dopa)

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/364

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlagen1@udayton.edu.
An Electrochemical Study of L-3,4-dihydroxyphenylalanine (L-DOPA)
Rachel Van Atta
Advisors: Dr. Douglas C. Hansen and Dr. R. Gerald Keil

Objective: Understand electrochemistry of L-DOPA to have insight into electrochemistry of proteins isolated from blue mussel (Mytilus edulis L)

Introduction
Blue Mussels
• Secrete adhesive structures composed of proteins containing L-DOPA
• Adhesive structures contain metal ions
• Ability to complex metal ions allows for attachment to substrates
• L-DOPA is a novel amino acid having a catecholic functional group

Catechols
• Catechol is 1,2-dihydroxybenzene
• Metal-ligand coordination plays a critical role in adhesive structure formation and adhesion
• Coordination between iron (Fe) and catechol ligands is correlated to high extensibility of mussel byssal threads
• When a catechol coordinates with iron, it forms a metal-catechol complex
• The stoichiometry of Fe³⁺-catechol complexes (mono-, bis-, or tris-) is controlled by pH
• A mono- complex is formed at an acidic pH, a bis- complex at a neutral pH, and a tris- complex at an alkaline pH

Methodology
CV Scans
• 10mL cell with platinum working electrode
• Silver silver chloride reference electrode

Spectroscopy
• Measured absorbances
 - pH=4.5, λmax 650 nm
 - pH=7.2, λmax 545 nm
 - pH=10.2, λmax 503 nm

Results
Cyclic Voltammetry
pH= 4.5
999ppm L-DOPA / 30ppm Fe = 3.3
3.3/197.2 g/mol L-DOPA * 55.85 g/mol Fe = 0.9:1
0.9:1 is ~ 1 L-DOPA to 1 Iron

pH= 7.2
198ppm L-DOPA/ 30ppm Fe = 6.6
6.6/197.2 g/mol L-DOPA * 55.85 g/mol Fe = 1.9:1
1.9:1 is ~ 2 L-DOPA to 1 Iron

Spectroscopy
pH=4.5
137.9 ppm L-DOPA / 30 ppm Fe= 4.6
4.6/197.2 g/mol L-DOPA * 55.85 g/mol Fe=1.3:1
1.3 L-DOPA to 1 Iron

pH=7.2
238.59 ppm L-DOPA / 30ppm Fe= 8.0
8.0/197.2 g/mol L-DOPA * 55.85 g/mol Fe= 2.3:1
2.3 L-DOPA to 1 Iron

Conclusions
• Fe³⁺/L-DOPA complex stoichiometric at pH= 4.5 and 7.2
• Fe³⁺ is more strongly complexed in L-DOPA at pH=7.2
• Absorbance plot shape implies a larger Kₐ at pH=7.2

References: