Advancing Segmentation Techniques for Rigid-Body Shape-Changing Mechanism Design Specific to Variable Geometry Extrusion Dies

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
https://ecommons.udayton.edu/stander_posters/389

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Advancing Segmentation Techniques for Rigid-Body Shape-Changing Mechanism Design Specific to Variable Geometry Extrusion Dies

Bingjue Li
Advisors: Dr. Andrew Murray & Dr. David Myszka
Department of Mechanical & Aerospace Engineering

Research objectives: To improve the kinematic theory for designing shape-changing dies or other rigid-body mechanisms which primarily use prismatic joints and require large differences in arc length between the desired profiles.

Polymer extrusion
Extrusion is the process of utilizing pressure to force melted plastic through die orifice. The channel shape of the die is what primarily defines the cross section profile of the extruded product. Shape-changing dies allow the cross section of the extrudate to alter during extrusion.

Design methodology
- Specify link types and joint types
- Create links
- Fuse links and close the chain
- Optimize the chain according to error matrix
- Shift end point position for closed profiles

Rigid-body shape-changing mechanisms
A typical shape-change problem seeks a device that approximates a set of specified shapes with the edge geometries of some of its components. Rigid-body mechanisms are able to create large changes in motion with readily predictable responses to a large variety of loading schemes.

Shape-changing extrusion dies
Revolute joints may introduce polymer leak, therefore it is desired to eliminate the use of revolute joints. Prismatic joints allow to achieve significant change in arc length of the profiles without causing leak.

This work has been supported in part by the University of Dayton Office for Graduate Academic Affairs through the Graduate Student Summer Fellowship Program.