4-9-2014

An Interactive Robust Artificial Intelligence-based Defense Electro Robot (RAIDER) using a Pan-Tilt-Zoom Camera

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters
Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
https://ecommons.udayton.edu/stander_posters/385

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, msclangen1@udayton.edu.
The Robust Artificial Intelligence-based Defense Electro Robot (RAIDER)

What is the RAIDER?
The Robust Artificial Intelligence-based Defense Electro Robot is an autonomous Unmanned Ground Vehicle (UGV) Robotic Base: The Husky A200 from Clearpath Robotics

- Base Equipment:
 - Network Router
 - 2 Arecont IP Cameras
 - 2 Axis PTZ Base Cameras
 - Microsoft Kinect
 - Onboard Processor
 - Vocalization Speakers

System Hardware Design

- Control Processing
 - Automatic Detection, Recognition and Tracking image processing algorithms determine the direction and speed of the Robot
- Robot Onboard Processing
 - Network Trafficking and Communication among all IP cameras
 - Robot Operating System
 - Ethernet – RS232 Convertor of Robot Control Signals

Modalities of Surveillance

- Flag a Person of Interest
 - Body Detection/Recognition
 - Flag Suspicious Human Activity
 - Pose Invariant Face Detection/Recognition
 - Iris Recognition

What Can It Do?

Multiple Modalities of Surveillance
- Face Detection and Recognition
- Human Body Detection and Recognition
- Iris Identification of Individuals
- Detection of Changes to the Scene
- Human Activity and Action Recognition

Autonomous Navigation
- Following a Person of Interest
- Avoidance of Obstacles
- Reaction to Changes in the Scene

Scene Visibility and Understanding
- 3D Scene Reconstruction
- Ability to perform in multiple variations of weather, lighting and terrains

Autonomous Navigation
- Autonomous control signals from computer vision algorithms
- Challenges:
 - Vision-based Depth estimations
 - “Remembering” scene
 - Obstacle avoidance
 - Stationary
 - Moving
 - Optimal Path Selection

3D Scene Reconstruction
- In order to be able to navigate itself, the RAIDER relies on accurate 3D reconstruction to understand the depths and remember the surrounding environment.