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This paper investigates anisoplanatic numerical wave simulation in the context of lucky look imaging. We
demonstrate that numerical wave propagation can produce root mean square (RMS) wavefront distribu-
tions and probability of lucky look (PLL) statistics that are consistent with Kolmogorov theory. However,
the simulated RMS statistics are sensitive to the sampling parameters used in the propagation window.
To address this, we propose and validate a new sample spacing rule based on the point source band-
width used in the propagation and the level of atmospheric turbulence. We use the tuned simulator to
parameterize the wavefront RMS probability density function as a function of turbulence strength. The
fully parameterized RMS distribution model is used to provide a way to accurately predict the PLL for a
range of turbulence strengths. We also propose and validate a new parametric average lucky look optical
transfer function (OTF) model that could be used to aid in image restoration. Our OTF model blends
the theoretical diffraction-limited OTF and the average turbulence short exposure OTF. Finally, we show
simulated images for several anisoplanatic imaging scenarios that reveal the spatially varying nature of
the RMS values impacting local image quality. © 2021 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

The simulation of atmospheric optical turbulence is vital in understanding the impact of turbulence on imaging
systems and developing and evaluating turbulence mitigation algorithms. A powerful method for turbulence
simulation uses numerical wave propagation [1]. Here, a point source model is numerically propagated
through a series of phase screens to the camera pupil plane. The pupil plane phase ultimately forms a
point spread function (PSF) that is used to simulate image degradation. Recently, this approach has been
extended to anisoplanatic imaging scenarios for wide field-of-view terrestrial imaging applications [2, 3]. In the
anisoplanatic case, an array of point sources in the object plane are propagated through extended phase screens
to create spatially varying PSFs with accurate spatial correlation between PSFs. These methods have been
validated using metrics such as isoplanatic angle, tilt variance, tilt correlation, and optical transfer function
(OTF) analyses [3].

However, one important validation metric not previously considered is the distribution of the pupil-plane
wavefront phase error. This distribution captures the variation in the level of degradation introduced by the
simulated pupil plane wavefronts. Closely related to the distribution of the wavefront phase error is the
probability of lucky look (PLL). A lucky look is defined by Fried [4] as a tilt-corrected pupil plane wavefont

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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phase root-mean-square (RMS) value less than or equal to 1 radian. We believe matching the theoretical
wavefront phase error distribution and PLL are critically important for a simulator when studying turbulence
and turbulence mitigation algorithms. We find this is possible, but only with careful choices of the wavefront
sample spacing and the number of wavefont samples used for propagation. In this paper, we propose closed-
form equations for these sampling parameters and demonstrate that they produce simulated wavefront phase
RMS value distribution and PLL that closely match the distribution obtained with an independent Zernike
analysis and with values reported by Fried [4]. The proposed sampling rules are based on the bandwidth of
the point source used for propagation and the level of turbulence indicated by the Fried parameter, r0.

In the study of lucky look imaging, we believe it is valuable to have a model for the probability density
function (PDF) of the RMS wavefront phase for a given turbulence strength. A three-parameter gamma
function has been shown to yield close fitting to RMS wavefront phase in the astronomy case where tip and
tilt are removed with an adaptive optic [5]. The previous form of the three-parameter gamma function relied
on calculating statics of empirically measured RMS distributions in order to fit the three parameters. Using
our tuned numerical-wave simulator, we are able to generate large quantities of wavefront RMS data. This
allows us to generate a densely sampled wavefront phase RMS distribution for a wide range of turbulence
strengths. We use these data to generate closed form expressions for the three parameters of the gamma PDF
as a function of turbulence strength. In turn, this enables us to calculate the PLL values for a continuous range
of turbulence strengths. This helps to fill in the PLL values between those reported for discrete turbulence
levels in Fried’s original landmark work [4] for the weak turbulence regime. Our model also matches well
with Fried’s closed form PLL expression that applies only to higher turbulence levels.

Another important aspect of modeling lucky look imaging is an OTF analysis. Here we propose a parametric
model for the average lucky look OTF. Our model blends the theoretical diffraction-limited OTF [6] and the
average turbulence short exposure OTF [7]. We show that the blending parameter, β, can be expressed in terms
of Strehl ratios and ultimately the wavefront RMS PDFs mentioned above. Using the simulator we validate the
proposed lucky look OTF. We believe the parametric lucky look OTF model can be used to better understand
lucky look imaging and to aid in image restoration for turbulence mitigation.

The rest of the paper is organized as follows. Section 2 discusses the calculation of the pupil plane wavefont
statistics and modeling the average lucky look OTF. The numerical wave propagation sampling parameters are
introduced in Section 3. Section 4 shows the experimental results that include the wavefront RMS fitting and
PLL analysis. Also presented is an empirical validation of the lucky look OTF model. Section 4 concludes with
anisoplanatic image simulation results that reveal the spatially varying nature of the RMS values impacting
local image quality. Finally, we offer overall conclusions in Section 5.

2. LUCKY LOOK STATISTICS

In this section we present the relevant lucky look statistics. We begin with a Zernike wavefront phase model
since we use this to help validate the numerical wave simulator and the resulting RMS distributions.

A. Zernike Wavefront Phase Model
A commonly used approach to modeling the wavefront phase for a variety of applications, including imaging
in turbulence, is to express the wavefront phase as a weighted sum of 2D Zernike polynomials. One can use
this approach to not only model the wavefront phases, but to also simulate realizations of wavefront phases
for statistical analyses. We follow the approach presented by Roddier [8], who built upon the earlier work of
Noll [9].

One can use a finite number, J, of Zernike polynomials to produce wavefronts that seek to capture the
Kolmogorov spectrum of atmospheric turbulence. Roddier [8] shows that a J × J covariance matrix, C, is
required to generate the appropriate weightings of the Zernike polynomials. The covariance is dependent on
the system aperture, D, and coherence diameter of the atmosphere, r0, also referred to as Fried’s parameter. We
refer the reader to [8] for the exact form of the covariance matrix. Roddier uses a singular value decomposition
(SVD) to produce C = USVT, where U and V are unitary. The matrix S is a diagonal matrix containing
eigenvalue terms of the Karhunen-Loéve function, and s = diag(S).
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Now consider a J × 1 Gaussian random vector, b, with independent identically distributed (i.i.d.) elements.
Let the variances of the elements in b be given by the corresponding elements in s from the SVD analysis
mentioned above. A vector of Zernike polynomial weightings can then be defined as

n = UTb, (1)

where n = [n1, n2, ...nJ ]
T. A single random atmospheric wavefront phase, φ(x, y), can be calculated using the

weights in Eq. (1) as

φ(x, y) =
J

∑
j=4

njZj(x, y), (2)

where x, y are the continuous spatial coordinates in the pupil plane. The term Zj(x, y) represents the j′th
Zernike function. Note that our summation excludes j = 1 to omit the contribution of the piston term, Z1(x, y),
as we are interested in the incoherent imaging scenario. Additionally, the Zernike tip/tilt terms, defined as
Z2(x, y) and Z3(x, y), are also removed in Eq. (2) as they solely lead to PSF displacement, not blur.

The RMS metric is commonly used to quantify the wavefront distortion that controls the amount of blur
from optical aberrations. The RMS of φ(x, y) may be expressed as

∆φ =

(
4

πD2

∫∫
A
(φ(x, y))2dxdy

)1/2

, (3)

where A is such that (x, y) ∈ A spans the aperture area. Fried’s [4] definition for the isoplanatic PLL can then
be calculated as

Prob(good short-exposure image) = Prob
(
∆φ ≤ 1 rad

)
(4)

for a single turbulent wavefront phase. Fried used a Monte Carlo analysis to compute PLLs, as reported in [4].
Some of Fried’s computed PLLs are also listed here in Sect. 4. In the original work, Fried generated wavefront
phases using an approach similar to the Zernike model in Eq. (2). However, instead of Zernike polynomials, a
specially designed set of othonormal polynomials was computed and used. It has been shown that the Zernike
representation closely matches the orthonormal polynomials originally used by Fried [10].

As one might expect, the PLL drops as the turbulence strength increases. Fried fit a curve to the data in
his Monte Carlo analysis and offers a convenient closed-form expression for the PLL for moderate to higher
turbulence levels. In particular, Fried states that for D/r0 ≥ 3.5 the PLL can be approximated by

Prob
(
∆φ ≤ 1 rad

)
≈ 5.6 exp[−0.1557(D/r0)

2]. (5)

As we will show in Sec. 4, this expression is accurate for high turbulence levels, but is not representative in the
weaker turbulence regime that is common in terrestrial imaging applications.

B. RMS and Strehl Ratio
The probability of a lucky look could also be calculated from a PDF, f∆φ

(r), that represents the density of the
RMS values, r, calculated from the tip/tilt removed phase contributions in the pupil plane for a given D/r0
where

Prob(∆φ ≤ 1 rad) =
∫ 1

0
f∆φ

(ξ)dξ. (6)

Astronomical imaging of a star with a Shack-Hartman sensor and adaptive optic [5] produced RMS phase
distributions for a set D/r0. The RMS phase distributions in [5] and [11] have a heavy tail towards higher
RMS values. Gladysz, et al., [5] demonstrated a gamma function can closely match the RMS PDF, f∆φ

(r), using
three parameters; k defining the shape parameter, θ being the scale parameter, and µ shifting the PDF. The
three-parameter gamma discussed in [5] is given as

f∆φ
(r; k, θ, µ) =

(
r−µ

θ

)k−1
exp

(
− r−µ

θ

)
Γ(k)θ

(7)
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for r ≥ µ with the gamma function, Γ(k), calculated as

Γ(k) =
∫ ∞

0
tk−1e−tdt. (8)

Two useful calculations, utilized later in this section, are the expected value of the three parameter gamma
PDF,

E[∆φ] =
∫ ∞

0
r f∆φ

(r)dr, (9)

and the average lucky RMS value for a threshold, b,

E[∆φ|∆φ ≤ b] =

∫ b
0 r f∆φ

(r)dr∫ b
0 f∆φ

(r)dr
. (10)

Note that we use a threshold of b here, rather than 1, as a generalization of Fried’s original lucky look definition.
A third option in determining the PLL is accomplished by examining the Strehl ratio [12]. The Strehl ratio is

generally used in astronomy where a very small star acts as point source to produce a turbulent point spread
function (PSF) seen in the image plane. Imaging a point source when no turbulence is present results in seeing
a diffraction limited PSF. The diffraction limited case reveals the best resolution possible through the camera
and generally has a tight core whereas the turbulent PSF has a more scattered core [13]. A single random
atmospheric wavefront phase calculated in Eq. (2) can be transformed into a turbulent PSF, hφ(x, y), following
the process described in [14]. The Strehl ratio can be calculated for a single turbulent PSF as

sφ =
max(x,y)[hφ(x, y)]

max(x,y)[hdi f (x, y)]
, (11)

where the use of the hdi f (x, y) in the denominator bounds 0 ≤ sφ ≤ 1 since diffraction limited is the best
possible resolution. A useful conversion between the Strehl ratio and the corresponding wavefront phase RMS
can be calculated as

sφ ≈ exp(−∆2
φ) (12)

using the Maréchal approximation [15]. The average Strehl ratio can be calculated using Eq. (12) to transform
f∆φ

(r; k, θ, µ) to fsφ(q; k, θ, µ) [16] to give the formula

fsφ(q; k, θ, µ) = f∆φ
(
√
−ln(q); k, θ, µ)(2q

√
−ln(q))−1 (13)

with the expected value

E[sφ] =
∫ 1

0
q fsφ(q; k, θ, µ)dq =

∫ 1

0
f∆φ

(
√
−ln(q); k, θ, µ)(2

√
−ln(q))−1dq. (14)

The average lucky look Strehl ratio can be computed using the same approach as that in Eq. (10) but with the
PDF from Eq. (13) and a transformed threshold of p ≈ exp(−b2) from Eq. (12). This gives rise to

E[sφ|sφ ≥ p] =

∫ 1
p f∆φ

(
√
−ln(q); k, θ, µ)(2

√
−ln(q))−1dq∫ 1

p f∆φ
(
√
−ln(q); k, θ, µ)(2q

√
−ln(q))−1dq

. (15)

C. Optical Transfer Function
Let us now turn our attention to an OTF analysis for lucky look imaging. First, the diffraction-limited OTF is
defined in [6] as

Hdi f (ρ) =


2
π

[
cos−1

(
ρ
ρc

)
− ρ

ρc

√
1−

(
ρ
ρc

)2
]

ρ ≤ ρc

0 else

, (16)
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with ρ =
√

u2 + v2 and u and v being continuous spatial frequencies in units of cycles per unit distance. The
optical cutoff frequency is given by ρc = 1/(λ f /#) with the f-number f /# being calculated as the ratio of the
focal length, l, over the aperture diameter, D. The average short exposure OTF [7] is

〈HTurb(ρ)〉SE,α = exp

{
−3.44

(
λlρ
r0

)5/3
[

1− α

(
λlρ
D

)1/3
]}

(17)

where α controls the characteristics of the average short exposure OTF. Fried[7] uses α = 1 for a near-field
approximation when D �

√
Lλ. A value of α = 1/2 is used for the far field approximation. In the context of

multi-frame turbulence mitigation, α has been viewed as a tilt correction factor from registration[17]. There a
value of α = 1 would represent perfect tilt correction and a true near-field short exposure OTF. If no registration
is used, but image fusion is still applied, one could set α = 0 and this would be equivalent to a long exposure
OTF[7].

We proposed a new average lucky look OTF model by blending Eqs. (16) and (17). This OTF model is given
by

〈HTurb(u, v)〉LL,α,β = Hdi f (u, v)(β + (1− β)〈HTurb(u, v)〉SE,α), (18)

where 0 ≤ β ≤ 1 is the blending parameter. A smaller β gives more weight to the average short exposure OTF,
while a larger β gives more weight to the diffraction OTF. We believe this is an intuitive model that allows us
to have a parametric model for lucky look imaging scenarios that can aid in image restoration for turbulence
mitigation. Interestingly, the blending parameter, β, can be related to Strehl ratios and ultimately the RMS
PDFs from Sec. 2.B. To show this, consider that the Strehl ratio from Eq. (11) can also be expressed in terms of
the OTFs [12]. Taking the double integral of both sides of Eq. (18) and normalizing by the diffraction OTF we
obtain ∫ ∫

〈HTurb(u, v)〉LL,α,βdudv∫ ∫
Hdi f (u, v)dudv

=

∫ ∫
Hdi f (u, v)(β + (1− β)〈HTurb(u, v)〉SE,α)dudv∫ ∫

Hdi f (u, v)dudv
. (19)

Then using the OTF-based Strehl ratio definition [12] we can express this in terms of the ensemble-average
Strehl ratios as

〈sLL〉 = 1β + (1− β)〈sSE〉. (20)

This can be expressed alternatively as

E[sφ|sφ ≥ p] = 1β + (1− β)E[sφ]. (21)

Solving for β we obtain

β =
E[sφ|sφ ≥ p]− E[sφ]

1− E[sφ]
. (22)

Note that β in Eq. (22) can be calculated using the three parameter gamma PDF introduced in Sec. 2.B using
Eqs. (14) and (15). In Sec. 4.B we provide the necessary calculations for k, θ, and µ for a given D/r0. We also
show in Sec. 4.B that there is close agreement between the model in Eq. (18) and the empirical lucky look
OTF generated from simulated data. We believe the proposed model for 〈HTurb(u, v)〉LL,α,β in Eq. (18) is very
intuitive and flexible. Using the parameter β we are able to adjust for the level of lucky look specificity that
may be employed. Also, the parameter α gives control over the nature of the assumed average short exposure
OTF. It should be noted that the model in Eq. (18) assumes a nominally diffraction-limited imaging system
when no turbulence is present. This is consistent with the anisoplanatic simulator used in our validation study.
However, for other applications, one can readily augment the model in Eq. (18) to incorporate other OTF
components such as defocus, optical aberrations, or atmospheric aerosols [18]. These OTF components could
be multiplied by the model in Eq. (18) to limit the upper bound on the overall OTF.
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Fig. 1. Single axis slice through the magnitude of the point source in the frequency domain for three differ-
ent ag values.

3. NUMERICAL WAVE PROPAGATION SAMPLING

The wave propagation simulator employed here [3] utilizes a 2-D Gaussian windowed sinc function, u0(x, y),
with quadratic phase as its point source [1]. This is calculated in the spatial domain as

u0(x, y) =
(

D2
1

λL

)
e−

jk
2L (x2+y2)sinc

(
x
(

D1

λL

))
×

sinc
(

y
(

D1

λL

))
e−

(D1/λL)2

16 (x2+y2),
(23)

where L is the propagation distance, λ is the wavelength of light, k is the wavenumber. The parameter D1 is
the width of the uniform wavefront span at the pupil plane that results from a propagation of the point source
due exclusively to diffraction with no turbulence.

Schmidt [1] states that D1 must be larger than the optical systems aperture, D, and is generally calculated
using an aperture gain, ag, as D1 = agD with ag > 1. The 2-D Gaussian windowed sinc function spatial cutoff
frequency, fx,max, for a single axis is driven by D1 such that

fx,max =
D1

2λL
=

agD
2λL

. (24)

The Nyquist sampling spacing [19] for Eq. (23) in a vacuum propagation is then

∆x =
1

2 fx,max
=

λL
agD

. (25)

The impact of ag on U0( fx, fy), the Fourier transform of u0(x, y), is plotted in Fig. 1 showing how a larger ag
will lead to a higher cutoff frequency.

Numerical wave propagation through atmospheric turbulence needs to include an additional term that
captures the added angular spreading induced by turbulence [20]. Schmidt [1] references the work of [20]
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where the apertures for a horizontal simulation grow by

D′1 = D1 + c
λL
r0

(26)

and
D′ = D + c

λL
r0

, (27)

where the scalar, c, indicates the overall simulation sensitivity to turbulence. The growth of the point source
diameter in Eq. (26) modifies the Nyquist sampling in Eq. (25) to produce

∆xr0 =
λL

agD + c λL
r0

, (28)

where the sampling rate decreases as the turbulence strength increases. Intuitively, this makes sense as stronger
levels of turbulence require finer sampling of the turbulence phase screens in order to produce the correct
turbulent PSFs.

The original spatial sampling rate used in [3] was derived in [19] as

∆xv =

√
λL
N

. (29)

Although Eq. (28) removes the number of samples across the propagation window, N , from the calculation
of ∆xr0 , compared to Eq. (29), care must still be taken to ensure there are enough samples across the phase
screens and aperture plane to allow for correct 2-D Fourier transforms. Schmidt [1] explains the number of
samples in the simulation must follow the inequality, for a constant ∆xr0 , as

Nr0 ≥
D′1 + D′

2∆xr0

+
λL

2(∆xr0)
2 , (30)

where a larger D/r0 will require a larger Nr0 and smaller ∆xr0 to properly sample the simulation, as shown in
Sect. 4.

A final consideration in setting ∆xr0 for a simulation is whether the Kolmogorov or von Karman model is
used to generate the phase screens. Kolmogorov turbulence dictates the inner scale of the PSD model to be
zero, while von Karman allows for a non-zero inner scale value. Knepp [21] suggests the ∆xr0 parameter must
be smaller than the inner scale, l0, value using the inequality ∆xr0 < l0/3 to adequately model the turbulent
phase.

4. EXPERIMENTAL RESULTS

Optical parameters and the majority of simulation parameters used in this paper are the same as in [3]. The
optical simulation parameters are listed in Table 1 while any variations to the simulation parameters are listed
in Table 2. The numerical wave propagation turbulence simulator [3] was upgraded to properly calculate pupil
plane wavefront phase RMS. A two-dimensional phase unwrapping algorithm [22] was used to unwrap the
pupil plane phase. The unwrapped phase was then detrended using a least squares 2D plane fitting approach
to remove the tip/tilt component.

A. Simulating Lucky Look Anisoplanatic Turbulence
The numerical wave propagation simulator generated 10,000 independent turbulent wavefront phase real-
izations, and corresponding PSFs, for a given D/r0, ag, and range of ∆x’s. Results from these trials produced
a single optimal ∆x̂ generating the correct PLL. The large number of independent realizations was required
to ensure an accurate PLL calculation and a highly populated histogram. Table 2 shows how the new ∆xr0

calculated from Eq. (28) is closer to the optimal ∆x̂ value than ∆xv used in [3]. This is due to the fact that
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Table 1. Optical parameters.

Parameter Value

Aperture D = 0.2034 m

Focal length l = 1.2 m

F-number f /# = 5.9

Wavelength λ = 0.525 µm

Object distance L = 7 km

Nyquist pixel spacing (focal plane) δ f = 1.5488 µm

Nyquist pixel spacing (object plane) δ f = 9.0344 µm

Voelz [19] utilized a chirp function as the point source versus a Gaussian windowed sinc function and did
not include the impact of turbulence. It is interesting to note the PLL’s sensitivity with the choice of ∆xr0

shown in Table 2. Relatively small changes in the ∆xr0 parameter can lead to the incorrect PLL, as shown in
the results between ∆xv and the optimized ∆xr0 . We have chosen to limit the smallest Nr0 value to 256 in the
numerical wave propagation simulator, as seen in Table 2 for ag equal to 3 or 4. The ag = 5 case allowed for
Nr0 to grow beyond 256 and still show correct PLL performance. Thus, the correct number of spatial samples
can be ascertained from Eq. (30).

Figure 2 shows the RMS wavefront phase distribution using 10,000 realizations for the numerical wave
propagation simulation and the Zernike based approach. The Zernike method uses J = 528. The numerical
wave propagation method uses Eqs. (28) and (30). One can see that there is excellent agreement between
the two simulation approaches in their RMS wavefront distributions. Also note that the distributions have
relatively long tails, similar to the real world astronomy results shown in [11]. As expected, the distribution
also shows a broadening and a shift to the right as the turbulence strength is increased. Extremely high levels
of turbulence lead to very small probabilities of a lucky look, as discussed in [4].

Table 3 shows some of the same validation metrics from [3], but here we use Eqs. (28) and (30) for
the sampling parameters. Note that we still see good agreement with these metrics using the proposed
sampling criteria. Thus, we have not lost any performance using the proposed sampling and have improved
with regard to the PLL statistics. The Fried parameter, isoplanatic angle, θ0, and RMS Z-tilt still retain
relatively small percent errors when compared to their theoretical values. The simulated r0 value was
calculated from the simulators average short exposure PSF, thus providing confirmation the new ∆xr0 does not
degrade past simulator performance. Additionally, the close match in the RMS Z-tilt between the numerical
wave propagation simulator and theoretical value ensures the simulation is producing the correct average
long exposure PSF. Average short and long exposure PSF are great metrics to ensure the numerical wave
propagation simulator is producing the correct temporal statistics. The correct PLL provides confirmation that
the distribution of pupil plane wavefronts, and subsequent turbulent PSFs, matches theory. It is important to
note that generating correct temporal statistics [3] does not guarantee the correct PLL as shown in Table 2.

The fact a change in the Nyquist sampling rate does not degrade the existing performance of the simulator
is supported by the work in [1] where there is a range of ∆x values that could be used in a simulation with
a 2-D Gaussian windowed sinc function. However, the work in [19] showed that there is a unique ∆x value
required to critically sample the simulation and thus produce the correct probability of a lucky look. The work
done in [1] still offers significant value for setting other simulation parameters necessary to achieve a valid
simulation. Further proof that the numerical wave propagation simulator is not degraded is shown in Sect. 4.C
where anisoplantic turbulent frames are shown using the new sampling criteria discussed earlier in this paper.



Research Article Applied Optics 9

0 0.5 1 1.5 2 2.5

RMS Wavefont Phase (Radians)

0

0.5

1

1.5

2

2.5

3

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

(a)

0 0.5 1 1.5 2 2.5 3

Zernike RMS Quantiles

0

0.5

1

1.5

2

2.5

3

W
a

v
e

 P
ro

p
a

g
a

ti
o

n
 R

M
S

 Q
u

a
n

ti
le

s

(b)

0 0.5 1 1.5 2 2.5

RMS Wavefont Phase (Radians)

0

0.5

1

1.5

2

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

(c)

0 0.5 1 1.5 2

Zernike RMS Quantiles

0

0.5

1

1.5

2

W
a

v
e

 P
ro

p
a

g
a

ti
o

n
 R

M
S

 Q
u

a
n

ti
le

s

(d)

0 0.5 1 1.5 2 2.5

RMS Wavefont Phase (Radians)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

(e)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Zernike RMS Quantiles

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

W
a
v
e
 P

ro
p
a
g
a
ti
o
n
 R

M
S

 Q
u
a
n
ti
le

s

(f)

Fig. 2. Histogram plots and quantile-quantile plot between the numerical wave propagation simulator
optimized results, with ag = 5, and Zernike based simulator RMS values for (a,b) D/r0 = 2, (c,d) D/r0 = 3,
and (e,f) D/r0 = 4.
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Table 2. Performance of different spatial samplings over a range of turbulence strengths, varying ag’s, and
c = 1.

C2
n (m−2/3) 0.284 ×10−15 0.558×10−15 0.901×10−15

D/r0 2 3 4

Fried PLL [4] 0.986 ± 0.006 0.765 ± 0.005 0.334 ± 0.014

ag 3 4 5 3 4 5 3 4 5

∆xv (mm) 3.789 3.789 3.789 3.789 3.789 3.789 3.789 3.789 3.789

N 256 256 256 256 256 256 256 256 256

PLL 0.992 0.991 0.956 0.815 0.811 0.551 0.434 0.409 0.126

∆xr0 (mm) 5.686 4.325 3.490 5.531 4.235 3.431 5.385 4.148 3.374

Nr0 256 256 328 256 256 352 256 256 364

PLL 0.988 0.987 0.988 0.746 0.763 0.767 0.301 0.333 0.340

Optimal ∆x̂ (mm) 5.668 4.315 3.554 5.507 4.220 3.423 5.354 4.130 3.383

Nr0 256 256 328 256 256 352 256 256 364

Optimal PLL 0.988 0.988 0.986 0.752 0.764 0.765 0.318 0.339 0.334

B. RMS PDF Estimation and Lucky Look OTF
Gladysz, et al., [5] utilized the mean and standard deviation of the RMS phase values to determine the
appropriate values of k, θ, and µ. We look to extend the empirical characterization of the three parameter
gamma function where the k, θ, and µ parameters are a function of D/r0 using the numerical wave propagation
simulator’s RMS distribution for a given D/r0. The 10,000 independent turbulent wavefront phase realizations
were used to help find an optimal equations for k, θ, and µ for a given D/r0. The MATLAB fminsearch function
was used to minimize the Kullback-Leibler divergence metric between the RMS distributions, using the new
sampling parameters discussed earlier with ag = 5, and Eq. (7) to determine the optimal equations for twenty
equally spaced D/r0 values from two to four. The optimal equations are

k̂ = −0.9878(D/r0) + 9.5029, (31)

θ̂ = (0.0598(D/r0) + 0.1080)2, (32)

and
µ̂ = (0.1101(D/r0) + 0.2498)2. (33)

The three parameter gamma PDF with the equations list above were used to plot the probability density curves
seen in Fig. 2. Additionally, the new equations can be used with Eqs. (6) and (7) to calculate the PLL for any
given D/r0 value between two and six. Fried’s Eq. (5) is then able to to properly predict the PLL at higher
levels of turbulence. The fact the RMS PDF can be used to accurately predict the PLL is plotted in Fig. 3 along
with the PLL from the numerical wave propagation simulator using the new sampling criteria. The PLL from
the RMS PDF shows excellent agreement with [4] at higher turbulence levels and ties in nicely with Eq. (5),
despite the fact k, θ, and µ were determined from the simulator RMS distributions between 2 ≤ D/r0 ≤ 4.

The simulated average lucky look OTF and the β modeled average lucky look OTF using Eqs. (22) and
(18) with an RMS threshold of one are shown in Figs. 4(a,c,e) for D/r0 values equal to two, three, and four,
respectively. The average lucky look OTF calculated from the appropriate simulator-generated turbulent PSFs
and the modeled average lucky look OTF from Eq. (18) show a high level of agreement. The D/r0 = 2 case
shows how the theoretical average lucky look OTF closely matches simulated average short exposure OTF,
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Table 3. Comparison between theoretical and statistical parameters from the numerical wave propagation
simulator using an ag = 5 and Eq. (28) for ∆xr0 .

C2
n × 10−16 (m−2/3)

Parameter 2.838 5.578 9.009

Theoretical r0 (m) 0.102 0.068 0.051

Simulation r0 (m) 0.104 0.071 0.053

Percent error 2.134 4.313 4.316

Theoretical θ0 (µrads) 4.568 3.045 2.284

Simulation θ0 (µrads) 4.746 3.347 2.560

Percent error 3.904 9.910 12.112

Theoretical RMS Z-tilt (pixels) 1.520 2.132 2.709

Simulation RMS Z-tilt (pixels) 1.524 2.105 2.777

Percent error (%) 0.207 -1.272 2.493

resulting in a very small β as seen in Fig. 5. Note in Fig. 5 that β goes up with increased turbulence level. The
reason for this is that lucky selection has a bigger impact at higher turbulence levels. As turbulence levels go
up, fewer observed PSFs meet the lucky criterion. This means there is a bigger difference between the average
short exposure OTF that accounts for all PSFs, and the lucky look OTF that accounts for only those passing
the lucky look test. At lower levels of turbulence, nearly all observed PSFs are considered “lucky” and this
means the lucky look OTF is not far from the normal short exposure OTF. However, note that in all cases here
β is much lower than the diffraction-limited value of β = 1. Additionally, the b term was also varied to show
how a threshold less than one, b = 0.8, generates a less attenuated average lucky look OTF and increases the
β value as a function of D/r0 (see Fig. 5). An optimal βopt value was determined by minimizing the mean
absolute error between average lucky look Strehl ratio created from averaging the simulated PSFs that meet
the lucky threshold and the modeled average lucky look Strehl ratio calculated from Eq. (18). The optimal βopt
varies slightly from the calculated β as shown in Fig. 5 with the RMS thresholds b = 1 and b = 0.8. The small
variation is the difference between βopt and β does not heavily affect the resulting OTFs shown in Fig. 4.

C. Simulation of Anisoplanatic Imagery
Finally, simulated anisoplanatic imagery over a seven kilometer path was generated using the truth frame
shown in Fig. 6. The simulated frames with turbulence degradation at three levels is shown in Fig. 7.
The numerical wave propagation simulator used the new sampling parameters discussed in Sec. 3, optical
parameters presented in Table 1, and simulation parameters in Table 2 [3].

The spatially varying turbulence increases in strength as the D/r0 value increases, as seen in Fig. 7. We are
able to map the corresponding wavefront phase RMS error for each turbulent PSF degrading the frame as well,
also shown in Fig. 7. Note that spatially varying wavefront phase RMS values also increase as D/r0 grows.
Lower RMS regions directly correspond to image regions that have not been severely affected by atmospheric
turbulence. We believe the intricate structure of the anisoplanatic RMS statistics depited in Fig. 7 capture
realistic spatial correlations in the PLL related statistics. The temporal evolution of the spatially varying
turbulence and RMS values can be seen in Fig. 8 where a small region of interest was selected for between two
sequential turbulent frames using the windspeed in [3]. The spatially varying warp and blur allows for certain
regions to increase in resolution and allow for a lucky look through the simulated atmosphere while others
decrease and heavily blur the truth scene. To the best of our knowledge, the simulated anisoplanatic spatial
structure of wavefront RMS values revealed in Figs. 7 and 8 has not been previously shown in the literature.
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Fig. 3. Various PLL data points and curves showing great agreement between the PLL calculated from
the three parameter gamma RMS PDF and numerical wave propagation simulator output using the new
sampling criteria.

5. CONCLUSION

In this paper we have shown how to modify the spatial sampling parameter from a vacuum propagation to
include turbulence via [20]. The addition of the Fried parameter ensures that the spatial sampling will decrease
as the amount of optical turbulence increases along the path. Additionally, the new spatial sampling parameter
is informed by the cutoff frequency for a 2-D Gaussian windowed sinc point source. Properly sampling the
point source, phase screens, and pupil plane allows for each turbulent wavefront, and subsequent turbulent
PSF, to have the correct RMS and contribute to an accurate PLL. This now guarantees the individual turbulent
PSFs have the correct spatial structure, along with the correct temporal structure to match the average short
and long exposures. Thus, the optimized ∆xr0 values do not degrade performance of the existing numerical
wave propagation simulator.

Wavefront phase RMS distributions for the numerical wave propagation simulator and Zernike based
simulation show excellent agreement. Zernike wavefront phase simulators are extremely powerful and fast for
isoplanatic applications when generating independent PSFs. Research has been conducted on generating the
temporal evolution of a turbulent PSF over an isoplanatic patch [23], and how to achieve spatial evolution
across portions of a frame [24]. The numerical wave propagation simulator incorporates large phase screens
that produce the accurate temporal and spatial PSF correlations over the sensor field of view. However, the
numerical wave propagation has a relatively high computational cost. All of these simulation methods have
relative merits and can be valuable tools in understanding turbulence and evaluating turbulence mitigation
methods.

Updated equations of the three parameter gamma model based upon the D/r0 turbulence strength were
discussed and the goodness of fit between the three parameter gamma RMS PDF and simulated RMS distribu-
tions was presented. The new three parameter gamma RMS PDF also aided in calculating the correct PLL for a
wide range of D/r0 values and bridged the gap between weak turbulence and the PLL equation defined in [4].
Additionally, a novel average lucky look OTF was defined by fusing the diffraction OTF and average short
exposure OTF. The average lucky look OTF calculation utilized the new RMS PDF and can be calculated for a
given D/r0 in weak turbulence, RMS threshold, and level of registration accuracy. RMS mapping of turbulent
imagery was also added to the simulator to provide insight into the amount of spatially varying blur seen in
newly simulated anisoplanatic turbulence imagery.
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Fig. 4. Average lucky look OTFs calculated from the numerical wave propagation simulator outputs using
the new sampling criteria and the corresponding calculated average lucky look OTF model incorporating
the new β value calculated from Eq. (22). Sub figures (a), (c), (e) utilize an RMS threshold of one, i.e. b = 1,
while (b), (d), (f) use b = 0.8 where (a,b) D/r0 = 2 , (c,d) D/r0 = 3 and (e,f) D/r0 = 4.
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Fig. 6. The ideal truth frame.
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