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Abstract 
Energy is the lifeblood of the industrialized world with electrical energy expected by the National Renewable 

Energy Laboratory (NREL) to increase 25% between 2016 to 2050 in the United States. Combined with the 

ever-present climate crisis, energy-efficient buildings are becoming increasingly important to conserve 

resources and alleviate strain on aging energy systems. The Industrial Assessment Center (IAC) program 

through the US Department of Energy aims to reduce the consumption of large, single-site energy users, 

industrial and commercial buildings, through comprehensive energy audits. Such investigations find that 

energy-efficient structures are a technological challenge as much as social. The mentality of building 

occupants towards energy use strongly impacts the efficiency of the building with the energy 

conscientiousness of the inhabitants being a key factor in maximizing theoretical performance. Not in My 

Backyard (NIMBY) is a social phenomenon where communities rise in opposition to controversial facilities 

that serve to upset community wellbeing. These are generally energy-intensive projects that may detract from 

the natural beauty or environmental health of an area. The negative reaction originates from difficult-to-

measure factors such as personal attitudes and trust between involved parties but can be loosely predicted by 

specific demographic quantities. This investigation aimed to primarily analyze the quantity, scale, and quality 

of community energy systems at the county level of Ohio in conjunction with collected IAC data and NIMBY 

demographics to identify potential external predictors for industrial energy intensity based on NIMBY 

sensitivity. Ultimately, only a weak correlation is found between industrial facility energy usage and the listed 

attributes, but the investigation paints a vivid demography of people, energy resources, and industrial 

agglomeration while emphasizing and supporting the need for continual research into the social functions 

that drive technical success. 
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Introduction 
Electrification of the United States is predicted to rise in all sectors. Energy 

consolidation into electricity is desired for its ease of exchangeability into mechanical or 

thermal energy, historically low cost, and transportability [1]. Because of this, the National 

Renewable Energy Laboratory (NREL) estimated between the years 2016 and 2050, 

nationwide electric demand is expected to increase a minimum of 25% from 3,783 TWh to 

4,722 TWh putting significant strain on the aging electric grid [2].  

Despite expected demand, historical analysis of North American Electrical Reliability 

Council (NERC) blackout events discovered an increasing frequency and duration of 

outages in the United States [3, 4]. These events are the majority attributed to extreme 

weather events which will be exacerbated by climate change [5]. The balkanization of the 

electric grid through deregulation will further impact infrastructure reliability through 

market competition to keep operating costs low [6]. 

According to the U.S. Energy Information Administration’s monthly energy review, the 

largest end-user of energy in the United States since 1975 is the industrial sector [7]. In 

2022, industry consumed a leading 32.77% of a yearly total of 100.42 quadrillion BTU’s 

[8]. When considering only electricity industry loses its lead but still maintains a significant 

25.8% portion of 2022’s sale of 3.81 trillion kWh [9]. While residential and transportation 

consumption is distributed, industrial and commercial applications are concentrated to 

consumers providing high opportunity for grid strain reduction through operational and 

process optimization. 

Industrial processes are entirely reliant on energy to transform resources into goods. 

Whether its mechanical, chemical, electrical, or human, all industrial sites can be 

considered primary resource processing plants converting energy plus raw material into a 

final product. In the case of electricity or even natural gas, the further distance they must 

travel in a distribution network, more energy is lost to unavoidable transmission 

inefficiencies. These generally come in the form of a line loss charge. Therefore, locational 

proximity to energy sources would prove an economic advantage for heavy energy users 

with less expense for transmission losses and more paid energy. Furthermore, workforce 

proximity to energy infrastructure may affect consumption rates. Sense of place is linked 

to the field of environmental psychology where an individual’s environment and 
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relationship to it shapes their behavior. Affinities and dislikes of an environments traits 

influence the way people treat that environment [10, 11]. If the workforce of a manufacturer 

were to live where more energy is imported than generated, they may feel sensitized to 

consumption as energy is an exotic import. Local demographics can help indicate firm 

energy intensity based on the energy generation concentrations of a region.  

It is imperative that grid strain is reduced, and U.S. Department of Energy sponsored 

Industrial Assessment Centers and commercial energy assessment programs provide a 

service to streamline facility energy consumption [12]. The groundwork of the assessment 

involves a lean energy analysis (LEA) generating a facility energy consumption profile. 

These profiles indicate energy intensive processes prior to site visit and likewise highlight 

areas for significant saving opportunities early on. Unfortunately, the time input of LEA 

less assessments reduces volume of assessments that can be completed per year and divert 

attention away from understanding process flow. The latter can negatively impact a team’s 

ability to propose meaningful operational recommendations and decrease grid strain since 

primary process is closely related to energy intensity [13]. To increase focus on process, an 

approximate percentage distribution of thermal and electric energy can theoretically be 

modeled using proximity relations between an individual facility and its energy 

infrastructure, and its local and county demographics including energy infrastructure 

statistics. 

A literature review indicated a limited body of research investigating firm energy 

intensity based on electric infrastructure proximity and surrounding demographics 

Academic focus has been primarily placed on investigating economic forces driving 

agglomeration, or how agglomeration impacts firm energy efficiency. A small portion of 

investigation has been made regarding energy resource agglomeration and its value in 

indicating firm energy intensity but is foundational in nature. There is also work 

investigating firm energy usage but requires granular detail of facility equipment. 

Unfortunately, such lists are rarely kept by small to medium sized manufacturers. This 

work hopes to make current understandings of place psychology, and economic or 

advantageous reasons for site selection more robust in the context of predicting firm energy 

usage from a majority external perspective.  
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The structure of this paper will proceed as follows. A literature review will be presented 

on relevant topics: industrial agglomeration studies with emphasis on proven predicting 

factors and energy efficiency effects, energy infrastructure site selection criteria, and how 

psychology of place impacts building energy efficiency and electric infrastructure site 

selection. Section three will present research methodology to create the necessary data to 

research. Section four will present the results of the data analysis, and section five will 

present relational results using the dataset discussed in section four. Section six will discuss 

findings and present future research opportunities. 

 

Literature review  
Industrial Agglomeration Patterns and Effects 

When accounting for industry agglomeration and conglomeration, the seminal work 

of Ellison et al. (1997) models the tendency of plants from similar industries to group 

together based on 2 ,3, and 4 number industrial codes. It’s found that highly specialized 

industries like furs, wine, or raw resource processing is found to be highly agglomerated. 

It is possibly explained through the idea of natural advantage or that decreased 

transportation cost paired with idea spillover from the raw resource industry itself drives 

industrial growth of these processors. Every other industry was found to have little to no 

concentrations with each other [14]. Ellison and Glaeser follow up their previous work with 

Ellison et al. (1999) where natural advantage in industry agglomeration if further explored 

in relation to industry geographic concentration. The results were inconclusive with the 

writers conjecturing that 50% of observed agglomerated industries are concentrated due to 

natural advantage. But, their model fails to account for local geography and industry idea 

spillover such as why shipbuilding isn’t concentrated in Colorado or the fur industry being 

concentrated in New York [15].  

Trailing works such as Rosental et al. (2001) expanded on the scope of Ellison and 

Glaeser by conducting analysis at the zip code, county, and state level within the United 

States. Findings indicated that natural resource access, raw input, and non-perishable 

output strongly effected agglomeration at the state level. Transportation modes effected 

agglomeration at the county level for shipping sensitive industries, and idea spillover was 

only a major concentrator at the zip code level. Labor share effected all levels of 
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agglomeration and may be able to transport idea spillover when workers move. More is 

left to be found as only 30% of agglomeration is explained with such modeling [16].  

When generating empirical based models, Todd et al. (2003) found that industry 

increases at a rate far faster when the majority of firms are small to medium sized. Growth 

rate of new businesses also scales from 1% to 9% per year with industrial concentration as 

it nears the U.S. National average [17]. In order to make models more robust due to the 

complexity of agglomeration, O’Donoghue et al. (2004) attempts to simplify the process. 

A localization quotient is utilized which compares the local and national ratio of 

employment in specific industrial sectors. This model loses granularity and interpretability 

but increases ease of determining agglomeration at the county level [18]. 

While agglomeration is better understood at a general level, Diego et al. (2010) aimed 

to find city-specific causes for agglomeration. Within large population centers, driving 

factors for agglomeration continue through labor pooling, but also increased opportunity 

due to that pooling. Idea spillover can occur more often, and employees can be better 

matched to employers. There is also an argument that cities create intense competition 

where only the most productive firms survive. Diversity, competition, and shared resource 

hubs drive agglomeration in large population centers, but further modeling is required to 

identify which factors are stronger [19]. 

Ellison and Glaeser return and apply Marshallian theories of industry agglomeration. 

These are goods, labor, and ideas. When applying these ideas empirically based on a 

dataset, all three hold true and stable, and are equal in magnitude. The variable of natural 

advantage is found less important. This may be due to the finite number of natural 

advantages samples in the dataset. This work also highlights the need to analyze 

agglomeration patterns with time due to how transportation costs for goods have fallen so 

how has idea transportation been effected [20]. 

Industrial agglomeration energy efficiency can only be achieved through intentional 

guidance. Based on data from China’s industrialization between the 2000s to 2010s, Feng 

et al. (2018) identified that low quality diversified and specialized agglomeration has low 

energy efficiency. Low quality diversified agglomeration has the poor side effect of lower 

nearby community energy efficiency as well. Causes of low quality were attributed to little 
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direction from government to factory owners and builders leading to haphazard poorly 

intentioned construction [21].  

Working off the suggestion from Ellison and Glaeser to perform a longitudinal study 

of agglomeration, Mathieu et al. (2022) analyzed industrial agglomeration in the United 

States across 44 years. Results found that over time, labor market pooling and goods access 

became a less important factor while knowledge spillovers increased. This was attributed 

by the writers to shocks in trade and technology in the form of increased trade competition 

but independent of falling transportation cost prices [22]. 

When considering foreign firms, industry level agglomeration greatly impacted the 

site selection preference for Japanese firms opening industrial sites in the U.S., and 

financial incentives from state or local governments played negligible roles in attracting 

business. Domestic firms kept Japanese firms interested in geographic locations with a 

death of domestic activity leading to Japanese apathy [23]. Turning to the Japanese home 

islands, firms that employed energy efficient practices, saw nearby firms do the same. In a 

different same vein, cement agglomerated firms saw negative correlation between energy 

efficiency and agglomeration. The paper emphasized the importance of considering local 

circumstances in energy efficiency agglomeration predictions [24]. 

Instead of focusing on economic, political, or cultural factors, an attempt was made by 

Moreno-Cruz et al. (2017) to model firm agglomeration based on energy usage. 

Incorporating energy into the agglomeration patterns identified that productivity of energy 

resources correlated to population center size while prevalence of roads and rivers 

magnified productivity. Unfortunately, the theory can only be applied over single core 

applications where nearby labor activity is not accounted for in this model [25].  

When observing energy agglomeration across a longer-term period, it was found that 

industries readily clustered around cheap available power. This came in the form of 

hydroelectric power in the 20s to 50s where cheap electricity was a driving factor and 

continual growth motivator for industry. This is opposed to industries founded after the 50s 

when grid energy powered by coal plants came to out compete hydroelectricity. The cheap 

energy drove labor pooling, idea spillover, and reduced cost of goods transportation which 

spurred industry development far after the heyday of hydropower [26]. 
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Electric Infrastructure Site Selection Criteria and Hurdles 

 Energy infrastructure site selection is a crucial element in the construction process 

and final outcome. The grid operates as one large machine, and placement of contributing 

elements affects operations. Power generation equipment has been historically limited by 

natural resources with the transmission lines of the grid coming to the power versus the 

power being constructed where infrastructure already is. 

 Renewable energy is a particularly difficult sector of power generation to define as 

opposed to thermal generation sites, renewables are wholly dependent on natural advantage 

to maximize generation. For wind power stations, the predominant factor influencing site 

selection is wind speed and density with distance to roads and power infrastructure 

following up natural resources since a shorter distance results in less infrastructure needing 

to be built. Common restrictions are centered around protected land and species. It is 

important to note though that societal factors such as distance to urban areas, noise 

pollution, and local acceptance of the site are often vital to start construction in the first 

place [27]. From an economic lens, the natural resource advantage of wind speed and 

density as well as distance to infrastructure are vital to decreasing costs of wind 

installations. This severely limits opportunity but if companies are willing to take greater 

risks in site selection more land is suitable for economic wind power. Such decisions would 

have to be driven by chance or greater data [28]. 

 Similar to wind, solar power site selection is driven by natural resource availability 

with total solar irradiation being the most important feature. This is followed by proximity 

to power infrastructure, substations, sloping of the land, and distance to transport 

infrastructure [29]. Only then, social considerations like distance to population centers and 

land use, how is the land being cultivated conserved, is considered in selection. It is 

important to note that public support, impact on local economy, and policy support is 

greater cited for solar projects as a determinant in site selection than wind power [30]. 

 Thermal power plants are the baseload generators of any functioning electric grid. 

Their energy is reliable, thus so must their site. Site selection is a finalizing decision which 

dictates limits and operational capacities of any generating station. Thermal power plant 

site selection can be quite a challenging process as the weights of the different criteria are 

interdependent. While population centers are dependent on their energy, they are offput and 
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ailed by emissions from combustion or safety risks from nuclear. Thermal power sites like 

coal or natural gas can significantly hamper tourism and natural or cultural heritage. Since 

these static sites require constant human interaction, security, both geologic and human, is 

necessary to be considered [31]. For thermal installations, the existence of the fuel supply 

is of primary importance. Geology is also considered to accommodate the large structures 

that house the generating equipment. Then, land and water availability must be considered 

to properly size and cool the thermal system. Transport infrastructure then ensures a 

consistent supply of fuel. Distance to population and load centers are also vital areas to 

consider. Because these plants will be consistent output sites, land use is important as it 

will not only effect generation capacity but also community relations [32]. Favorable sites 

allow for low cost of construction and generation, and location close to load source 

decreases transmission expenses. Power plants though don’t want to cluster. Excess 

generation concentration can overload the grid infrastructure. Veto effects of local 

communities must also be considered. Local obstinance to construction to an ideal site may 

prove more costly in the long run than selecting a less than optimal site. The high-power 

density of thermal power stations and the high power consumption density of factories 

make combined heat and power (CHP) applications attractive. Grid strain can be reduced 

by basing power infrastructure on sites with a large, constant load source [33].  

Like thermal plants, substations are also static installations that are integral to 

baseline grid operation. Likewise, their construction considers security, both to natural and 

human risks, economics of construction and grid connection, environmental impact, and 

operational impact [34]. Land acquisition costs tend to be the main determinant of 

economics, and geography and topology are integral to the environment. Grid connection 

is mainly dominated by line planning and followed by distance from load center. Closer to 

load center is more favorable [35]. Proximity to other substations though must be avoided 

as grid stability is dependent on evenly spaced stations [36]. 

Psychology of  Place and Energy 

Experiential and instructional events or a combination of the two affect an individual’s 

sense of place understanding, and attachment. Sense of place is often measured in civic 

engagement reasoning that an large active voter base indicates widespread care about who 

governs their place. High citizen satisfaction using the citizen satisfaction index is a strong 
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indicator of place attachment [37]. Using that sense, environmental education can be tied 

into location affinities to foster ecological stewardship in residents. One’s care about place 

affects their receptiveness to caretaking. Affinity to location influences action [38].  

This sense of place manifests itself through not in my back yard (NIMBY) activities 

by the residents. Controversial facilities or power infrastructure is resisted by certain 

communities as it poses some form of threat whether it poses significant health risks or 

ruins the image of the neighborhood [39].  

A study using Italy as the resident place investigated causes of “NIMBYism’s” in 

relation to gas-fired thermal power plants. Generating companies looking to build often 

avoid highly activistic communities. Population density weakly correlates to decreased 

probability of site selection. Developers also closely leverage existing infrastructure like 

gas pipeline and grid tie-in locations [40]. 

A study focused on energy projects in the United States analyzed how the different 

geographic impacts NIMBY. For communities that economically identify as a part of the 

energy industry, agriculture, or modernity see energy projects as opportunities at the local, 

state, and national level. They serve as modernization projects and help increase national 

independence. But at the local level, agriculture identifiers see projects as a threat due to 

land loss and import of transient, non-local labor. Those that a predominantly suburb, 

nature, home oriented at the local level see projects as a threat as they damage natural 

beauty, community tax revenue, and home value. Rural and industrial geographic 

identifiers at the local level see opportunity due to general tax increases with rate reduction. 

From a more general angle at the national and local level projects are seen as an opportunity 

to contribute to national energy independence by doing their part. The national, state and 

local level expand on this by seeing it as a service. The local level only sees projects as a 

threat as they do not address local needs. Generally NIMBY sentiment arises from local 

populations being or feeling disenfranchised by a high level decision [41]. Setting proper 

boundaries can help alleviate the issue. If the project poses only a perceived threat 

community dialogue erases apprehension [42]. 

The primary driver of energy characteristics that will be analyzed in the context of the 

social phenomenon known as NIMBY (Not in my Back Yard). NIMBY is a social response 

by communities against large, controversial infrastructure projects. These range from 
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affordable housing blocks to hazardous waste facilities. In a case study in Catalonia Spain 

analyzed potential NIMBY projects, and found energy, infrastructure, and urban pressure 

projects most contentious. Industry was barely a factor. The upper echelons of government 

generally proposed & upheld plans. Local government and community platforms and 

associations generally oppose projects. Locals upheld the opposition. NIMBY complex 

phenomena that involve much of personal perception, community perception, trust 

between parties, and respect boundaries between parties. Complex human dynamic [43]. 

The result of NIMBY is commonly attributed to culture not attitude. A case study 

regarding nuclear power facilities, and a sample size of 734 found that public awareness 

and sensitivity of free market failures in nuclear power drove equality minded communities 

to go anti-nuclear. Acceptors were more trusting of the capitalist system and rejectors more 

egalitarian asking for greater government economy regulation. While public trust and 

social characteristics are hard to measure, demographics correlate to NIMBY opinions. For 

this study, Women and high home income individuals were found to be more likely to 

oppose construction of hazardous waste facilities [44]. In the UK, residents of a town were 

gauged to see opinions on a new electric transmission line. The sample was representative 

of longstanding residents of town, but the elderly were overrepresented. 75% of 

participants lived in town more than 10 years with a minimum age of 18 and maximum of 

92. Of the respondents, 60% opposed all options citing a lack of trust in the developer and 

lots of trust in community organizations. Results were statistically significant through a 

Chi squared test, age, gender, education, and length of residence explained 4% of variance 

in objections.  Sociodemographic variables, place attachment variables explained another 

4%, total 8%. Educational attainment, significant in earlier steps, was no longer significant, 

suggesting that the influence of education on objections was actually captured by these 

project-related variables. Finally, variables related to the power line project itself were 

included. These explained an additional 31% of the variance, bringing the total to 39%. 

Most project-related variables had significant effects, except for trust in the local campaign 

group. The length of residence and place discovered remained significant predictors from 

the previous steps [45]. 

From a more social lens, the social and cultural barriers imposed by people in places 

contribute to a location’s ability to be energy efficient. Public apathy and misinformation 
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regarding energy efficiency flows downstream from the same poor understanding of where 

energy comes from. Americans believe they are entitled to cheap, abundant electricity, and 

utilities and politicians look to uphold this expectation through the use of fossil fuel thermal 

power stations. Costly and novel renewable energy is incongruent with this perspective. 

Despite falling costs and increasing efficiency, cultural presumptions about renewable 

energy sources preclude their construction in otherwise sorely needed locations [46].  

This is evident in energy use in large urban areas. Carbon emissions are greater with 

population density. The correlation is attributed to gas heating and energy inefficient 

buildings in large population centers. Although when observing more detailed metrics, the 

individual energy user in an urban environment is less carbon intensive than non-urban. 

This may suggest greater energy resource respect in urban environments [47]. 

In the home, carbon intensity is driven by technological innovation with 42% of energy 

savings from energy efficiency. But behavioral plasticity is also a key factor. The most 

energy efficient homes had all the latest technological innovations in addition to capable 

residents. They were knowledgeable of building control systems, kept lower temperature 

setpoints in the winter and higher in the summer, limited use of the washing machine and 

dryer. Human action energy savings are found to be near equivalent to pure technological 

building retrofits [48]. When modeling human social networks, it was found that 11%-31% 

less energy was consumed by households when communities were in active energy saving 

dialogue [49]. 

 

Methodology  
As this work is an exploratory analysis, a high-level county wide investigation of Ohio 

will be conducted to reveal any trends between established research and industrial energy 

consumption. County data will be acquired from public sources. Manufacturer counts will 

be sourced from the most recent 2020 U.S. Decennial Census, and infrastructure counts 

will be found through the Ohio Department of Transportation (ODOT) Transportation 

Information Mapping System (TIMS) database [50, 51]. Shapefiles for the counties of Ohio 

will also be acquired through TIMS. Electrical energy data will be acquired through the 

EPA eGRID database plus substation locations through the Open Street Maps Foundation. 

Thermal energy data of oil and natural gas wells will be sourced through the Ohio 
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Department of Natural Resources (ODNR) well locator database [52-54]. All additional 

population characteristics and employment statistics will also come from the 2020 U.S. 

Decennial Census [55-61]. Each of these databases will be used to create a county level 

profile of people, energy, and industry. This process of data processing is outlined in figure 

1. 

 
Figure 1: Data Transformation Process Flow 

 

Based on the literary buildup, there is a loose connection between sites of industry, 

energy generation, and population characteristics. Therefore, the following variables will 

be necessary. The main points of focus are that industry tends to collect loosely based on 

natural advantage, idea spillover and labor availability. Since energy is a vital resource to 

any manufacturing process, natural advantage will be analyzed under the lens of what is 

the total number, types, and size of those resources. To a lesser extent, the total length of 

road and number of freight trains per day in a county indicate strong transportation arteries 

that are necessary for importing needed natural resources. Idea spillover will be interpreted 

as the presence of similar industries and education levels of the host county. Labor 

availability will be assumed analogous to total population.  

Regarding natural advantage and electrical energy resources, power generators and 

substations tend to agglomerate based on their own form of natural advantage through 

existing infrastructure, distance to load, and site suitability for a particular type of 
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generator. The total number of substations and power plants plus the size, and types of 

power plants illustrate greatly what energy resources a community needs, tolerates, or has 

capacity for. Additionally, it will be important to understand the quality of the power plants 

of each community. This can be easily engaged through the capacity factor of the 

generating station. The.capacity factor is the ratio of total energy generated through the 

year to the total possible energy generated if the station ran completely uninterrupted. 

Power stations that have low capacity factors are considered peaking plants that only come 

online in reaction to grid demands, whereas high capacity factor indicates baseload, 

continuous operation. It is important to note that while peaking plants are smaller scale 

than baseload facilities, the ignition process produces more emissions than steady state 

operation so enough ignition cycling may average out to be equal to the emissions of certain 

baseload facilities. Community engagement is also an important facet of power plant 

construction as if a community is willing to tolerate large polluting structures, they will 

assumedly have a low NIMBY sensitivity and tolerate polluting, energy inefficient 

factories. Therefore, total sum emissions from power resources will be collected by county.  

Thermal energy is primarily sourced through natural gas. This resource has been a 

predominantly cheaper method to generate heat energy, and only recent advances have seen 

electric induction heating reach parity in capability and cost. Thus, the number of natural 

gas wells, well field size, and discovery year will be important to gauge the gas 

independence of a county. Note, this excludes total distance of distribution piping where 

counties low in gas resources may be large consumers. This will be missed in the 

investigation. Oil wells within Ohio will also be included. While not directly used for 

heating, oil is an important raw resource of petrochemical processes, and the presence of 

an oil well on a chemical plant site decreases operating costs and makes the plant more 

competitive. It may serve a role in identifying industry agglomeration. 

Considering that community NIMBY sensitivity and energy relationships may lead to 

further insight into lens and the energy consumer producer, place attachment will have to 

be addressed. Based on background research and critical judgement, age, income levels, 

home values, number of homeowners, and years of occupancy will be considered for health 

of the community. Based on the case studies found, place attachment can be loosely 

interpreted through these statistics. Older, homeowning, high earners will be more likely 
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to be tied to a locale than a newly moved, low earning, young professional.  Additionally, 

the percentage of the workforce contributing to manufacturing and energy plus raw 

resource production will be factored into the analysis. The share of the economy invested 

in each industry may correlate to energy conscientiousness and cost of energy due to the 

scale of stake and experience local workers and officials have in each respective activity. 

IAC factory data contains the location, Standard Industrial Classification (SIC) code, 

floor area, yearly sales, electrical energy cost in dollars per year and consumption in kWh 

per year, and thermal energy cost in dollars per year and consumption in MMBtu per year. 

Unit cost is calculated by the quotient of energy cost and consumption, and thermal electric 

ratios are calculated by the quotient of thermal consumption over electrical consumption, 

both in kWh. As it has been established that natural gas has a historical precedence for heat 

energy, the thermal electric ratio gauges the thermal intensity of a facility’s process. All 

variables to be collected and analyzed are shown in the table below. 

Table 1: Variables Under Consideration for the Analysis 

 
The Pearson correlation coefficient (r) will be primarily metric used to gauge 

relationships between county profiles and IAC factory energy data. The coefficient 

primarily describes the normalized covariance or the strength of a linear relationship 

between two variables. It is mathematically expressed in equation 1. 

 

 

 

Database Variables

Industry:
Count, IAC Sample Size, Road Length, Number 
of Freight Trains

Energy:

Number of Power Plants, Substations, Oil 
Wells, and Gas Wells, Power Plant Size, 
Capacity Factor, Pollution Output, Well Size, 
Well Discovery Year

People:

Population, Age, Income, Education, Home 
Value, Number of Homeowners, Year of 
Occpancy, Workforce Distrubution (MFG vs 
ENERGY)

IAC:
Floor Area, Sales, Energy Consumption, Energy 
Cost (Unit Cost), Thermal Electric Ratio
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𝑟 =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

        (1) 

𝑥𝑖  & 𝑦𝑖  – Individual Sample Points 𝑥̅ & 𝑦̅  – Sample Mean 

𝑖 - index 𝑛 – sample size 

𝑟 – Pearson Correlation Coefficient  

  

The numerator is the covariance or statistical measure of the linear relationship between 

two variables. It is computed by summing the difference between each sample point and 

its mean value. The denominator is a normalization factor to ensure the value of r is 

between -1 and 1. A value of -1 or 1 indicates a perfect correlation, and anything near 0 as 

no relationship with the sign indicating a proportional or inverse proportional relationship.  

In this case it will be IAC data against county industry, energy, and people profiles to 

highlight any linear relationships that exist. 
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Data Exploration 
Industrial Agglomeration Data 

Analyzing manufacturing site counts from the 2020 Decennial Survey, it reveals the 

manufacturing sites or businesses classified with SIC codes of 2000-3999. Observing 

figure 2a, major manufacturing bases exist within the Cuyahoga, Franklin, Montgomery, 

Butler, and Hamilton counties of Ohio. From those counties, manufacturing appears to 

spread out and distribute into neighboring counties. Every county further away from the 

sources of industry sees less and lesser populations of manufacturers. A small base also 

exists in Lucas County, most likely associated with industry in Detroit and the automobile 

sector. It is important to note that if one were to draw a line through Hamilton County and 

Clark County, there is a slightly stronger manufacturing presence to the northwest than to 

the southeast. 

  
Figure 2a: Manufacturer Count by County        Figure 2b: Sample Size of Industrial 

Data 

 Based on the sum of manufacturers in each county, the IAC dataset accounts for on 

average 4% of each county’s manufacturing base. The distribution is illustrated in figure 

2b. As the IAC database originates from the University of Dayton, the distribution aligns 

with the university’s location in Montgomery County with outreach extending more likely 

into neighboring counties and falling off further outward.  Additonally, the dataset is not 

randomly selected so results must be taken with caution. 
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 Considering other industial properties, the total road length was tallied in each 

county. This road length is measured in  unknown units and accounts for all types of roads 

that are traversable by tractor trailor. Roads not traverable by truck can indicate high 

density of people, but don’t indicate much about business operation types since the type of 

traffic using the roads is not differentiated. Roadways in figure 3a seem to match the 

number of manufacturers as higher lengths of road are seen in counties with higher levels 

of manufacturing. Similarly, the number of trains per day match. The figure of 3b depicts 

the number of freight trains through each county only on the mainlines of rail. Similar to 

roadways, higher number of trains are seen in areas with higher number of manufacturing. 

Although, it is important to note that branch lines are important drivers of industry and 

their exclusions may be detracting from data detail. Just because the southeastern portion 

of the state sees less manufacturing there are still noticeable numbers of trains traveling 

through those areas. As trains most often support heavy industry, this implies there is 

another connection occuring that could be addressed through other data visualizations. 

 
Figure 3a: Total Truck Traversable Road       Figure 3b: Number of Freight Trains 

Each Day 

County Energy Resources Data 

Considering energy resources, it is observed in figures 4a and 4b that counties high 

in manufacturing have high numbers of power stations and substations. Larger counts of 

both generators and transmission infrastructure are found in the northwestern slice of the 

state. There are also large collections along the eastern and southern border of the state. 
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This may likely be due to the natural advantage of these areas. The Ohio river runs along 

this border providing a large source of cooling to large thermal power stations. Lake Erie 

in the north also performs a similar role. Explanations for the quantity of power stations in 

the northwest section is not easily explained by natural advantage through these graphs 

alone, more investigation further on is required. 

  
Figure 4a: Count of Power Plants            Figure 4b: Count of Substations 

Observing counts of each type of power plant reveals a more enlighting picture. The 

traditional, Rankine cycle operated, baseload power plants are idenfified in coal and 

nuclear installations. The only two nuclear power plants of Ohio in figure 5b are located 

on the large thermal resivoir of Lake Erie. This body of water serves as an excellent cooling 

resource that would pose little risk of safety for nuclear power. The Couties of Lake and 

Ottowa border manufacturing centers indiciating closeness to load source and less need of 

infrastructure. The power they provide is in demand.  
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Figure 5a: Coal Plant Tally            Figure 5b: Nuclear Plant Tally 

Coal plants in figure 5a similarly exisit in Lorain, Lake, and Hamilton county 

providing much needed electricity to the manufacturing bases located nearby. But, large 

concentrations of power stations exist in Gallia and Jefferson County. These counties are 

the aforementioned sparsely populated by manufacturing areas of southeast Ohio. More 

information is needed to explain why. 

Biomass and hydropower are also baseload factors, but they are of more limited 

quantites and smaller scale. The technology is far less potent and widespread than coal or 

nuclear to have a significant impact on grid performance or pollution output. The biomass 

and hydro powerplant distribution can be observed in Appendix A. 

 Gas and Oil power stations can be considered peaking power plants. Their fast 

startup time and reactive controls enable them to better respond to transient grid demand 

rather than coal or nuclear stations. Fast startups and shutdowns are hard on the equipment 

of coal and nuclear power stations, but Oil and Gas handle the erratic behavior well. Thus, 

it would make sense to see higher quantities in the northeast for these stations as there is 

greater presence of industry. That industry may also be pulling varaible demands on the 

grid justifying then need for peaking power plants. Despite this, there are still significant 

gas concentrations in the southeast. These may be combined cycle gas plants that utilize a 

Rankine cycle that recycles heat loast from the gas turbine’s Brayton cycle. Rankine cycles 

require an active cooling source such as the Ohio River in that region. 
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Figure 6a: Oil Plant Count            Figure 6b: Gas Plant Count 

 Renewable energy sites in figure 7a and 7b are more difficult to rationalize based 

on the presence of industry. Natural advantage may be the primary driving factor for these 

power stations. The sites selected provide the most energy at the least cost to the installer. 

The communities where these types of power plants exist also lack baseload generation so 

the presence of renewables provides a degree of grid resilience. This allows these 

communities to be less dependent on long distance transmission lines. 

  
Figure 7a: Solar Plant Count           Figure 7b: Wind Plant Count 

 Expectedly, the total percentage of the state of Ohio’s electric contributors in figure 

8a and 8b primarily comes from counties with the large baseload generators of coal and 

nuclear. Counties with high levels of gas, oil, hydro, biomass, and renewable also 
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contribute significant portions. High power output occurs in counties that have high natural 

advantages for power generation or near industry. 

 
Figure 8a: Percent Share of State Grid Source  Figure 8b: Total Power Generation 

Capacity 

 
Figure 8c: CO2 Emissions from Power Generation 

While figures 8a and 8b highlight power generation to the state, figure 8c shows where 

the majority of the pollution is being emitted. the majority of pollution emissions are 

concentrated in counties with large coal, oil, and gas power stations. The coaling stations 

contribute the most to CO2 emissions as can be seen by the counties of Jefferson and Galia. 

Lesser concentrations can be observed around Lucas, Ottowa, and Lorrain. 



21 
 

Taking capacity factor into account, these numbers are further justified. Counties high 

in pollution output, and grid contribution see the highest capacity factors. This, once more, 

indicates that power generation within these communities is constant, and electricity is 

their resource of export. This can be rationalzied as the predominant philosophy of power 

plant consutrction has been based on economy of scale. Large power stations supported by 

natural advantage could provide power to the load sources far away over high voltage 

transmission wire. Such an approach is good for margins by maximizing output, but bad 

for grid resiliency. This is due to centralization, and the presence of renewable energy plus 

emissions resctricions has been degrading the output of these stations in the electric grid 

makeup. Another name for locations low in market interaction, but high in natural electricy 

generation advantage is an energy community. Just as how some towns in West Virginia 

survive off of the revenue and export of coal, some counties of Ohio survive by 

transforming those raw resources into another form of raw resource, electricity.  

  
Figure 9a: Capacity Factor Median           Figure 9b: Capacity Factor Range 

 Seeing that figure 9b highlights the capacity factor range, there are greater capacity 

factor ranges in counties close to manufacturing. The increased range implies the existence 

of more peaking power plants. Some serve baseload while others respond. There is greater 

diversity in generation technologies due to the greater diversity in electrical load. 

 Observing natural gas well locations and size, they are primarily clustered in the 

southeast of the state. Being that this region is near appachia, fossil reseverves would be 

expected. The appalachain mountains are known as large coal reserves within the United 
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States. Where there is coal or oil, the fossil fuel creation process has the byproduct of 

natural gas. This region may also be less developed. Rural houses often have their own 

natural gas wells for heating and other domestic purposes. The reason being that a gas 

supplier would need to lay the necessary infrastructure, and the cost of such an endeavour 

would outstrip the cost of installing a well. The average well size throughout those regions 

is small compared to the number of wells supporting this theory. Allen county in figure 9b 

may be a net exporter of natural gas due ot the low number of wells and high well size. 

 
Figure 10a: Gas Well Count                   Figure 10b: Mean Gas Well Area 

 A similar story to the Gas wells is observed in the oil wells of this region. Most 

wells in figure 10a are clustered along the eastern border with some extending into the west 

across the state. The average well size in figure 10b is quite small indicating individual and 

isolated operation. Augalize county may have a commercial operation capitalizing on the 

county’s natural resources as there is a large resivour compared to a small number of wells. 

Little insight was revealed through mean discovery date for either type of well. The figures 

are attached in Appendix B for viewing. 
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Figure 10a: Oil Well Count                   Figure 10b: Mean Oil Well Area 

County Demographics and NIMBY Data 

Addressing demographics data, it is observed in figures 11a, 11b, and 11c that counties 

high in manufacturing and electric power infrastructure have high population numbers, 

higher median incomes and lower median age. It is important to note the outliers to this 

correlation. Take for instance Athens and Ottawa county. Athens has low levels of 

manufacturing but a low median age. This is likely due to the presence of Ohio University 

and the high student population. Ottawa is high in manufacturing but has a high median 

age. This occurrence is less readily explainable. The population statistics also explain the 

energy resource distribution. The increased number of peaking plants are also reacting to 

residential or commercial demand in addition to manufacturing. There is simply more 

activity justifying greater necessity of spontaneity in the system. 
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Figure 11a: Total Population Counts           Figure 11b: Median Age Values 

 
Figure 11c: Median Income Values 

 The tendency of the state to split between northeast and southwest is accentuated 

by the median age and income graphics in figure 11b and 11c. Those northwest with higher 

manufacturing counts have demographics with a central tendency of younger age and 

higher incomes. The southeast is the opposite. Energy communities reliant upon raw 

resource or energy export appear to earn less and have longer staying residents than do the 

places that process and transform those raw inputs. 
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 This sentiment is echoed by figure 12a with the median home value higher in 

regions near manufacturing, but not in centers of manufacturing. This is likely the 

surrounding suburbs of the centers of undustry. Despite Cuyahoga and Franklin county 

being high in manufacturing counts, their neighboring counties of Geauga, Medina, and 

Delaware have comparatively higher home values. People may not want to live where 

manufacturing is. Likewise, figure 12b highlights areas higher in manufacturing seeing 

renters and homeowners having a central tendency of more recent year of residence. In the 

southeast, there are more longstanding residents. As shown in figure 12c these people are 

more likely to be home owners. Manufacturing centers see less home ownership. This is 

foreseeable due to the presence of large citities necessitating high density housing 

arrangements to accommodate not only manufacturing workers but the complex economy 

of the region. 

  
Figure 12a: Median Home Values  Figure 12b: Median Year of First 

Occupancy 
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Figure 12c: Percentage of County as Homeowners 

 Education levels seen in figures 13a, 13b, and 13c demonstrate that manufacturing 

based economies attract higher educated people. This is seen by the quantity of bachelors 

and graduate degree educated citizens located in large manufacturing bases of Cuyahoga, 

Delaware, and Hamilton county. But, the higher number of manufacturing sites increase 

the likelihood of highly specialized processes requiring highly skilled professionals. The 

northwest is high in manufacturing, but contains low numbers of bachelors and graduate 

educated individuals. The presence of the large cities and diverse economies of Cleveland, 

Columbus, and Cincinnati in Cuyahoga, Hamilton, and Delaware county respectively may 

be a plausible reason for the presence of elevated education. 

 
Figure 13a: Max Education High School          Figure 13b: Max Education Bachelors 
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Figure 13c: Max Education Graduate Studies 

 Investigating the workforce allocation to manufacturing versus energy resources 

solidifies the state split between energy and manufacturing discussed in previous sections. 

The northwest portion of Ohio in figure 14a is high in reliance on manufacturing for the 

local economy while the southeast in figure 14b is reliant on raw resource extraction and 

energy generation. The line through the middle two sections are where the most people and 

diverse commerce is likely found. There is less singular dependence on these industries. 

  
Figure 14a: Manufacturing Workforce           Figure 14b: Energy Workforce 

 Note that the percentage of dependence is different between the two. Manufacturing 

dependent counties exceed 35% of a county’s workforce while energy counties only exceed 

16%. This may indicate that there is less economic gain to be had with energy resources, 
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and there is a finite capacity on how many energy extractors and transmitters can but 

established in one locale. Manufacturing on the other hand has greater capacity for 

expansion and engulfment of the local workforce. 

 

Relational Analysis 
The correlation matrices generated include the data set variable names. Some of which 

may be difficult to discern meaning on their own. Thus, Appendix C contains a crosswalk 

between variable name and generalized meaning to increase readability and interpretability 

of results. 

The first correlation matrix in table 15 establishes relationships between high level 

manufacturing data and the IAC database. The first most notable aspect is the relationship 

between variables in the IAC database. Sales and floor area have moderate correlations 

with energy consumption both thermal and electrical. They also correlate to the thermal 

electric ratio. This internal validation indicates that energy usage is highly individualized. 

Even when lumped into categories, facilities manufacturing the same product can differ 

greatly in energy use based on unique attributes. This could include construction year and 

associated standards, the types of upgrades and changes experienced by the plant, the 

quality of maintenance, and much more. 

Considering then the industrial agglomeration variables, there is a weak inverse 

correlation between facility size, road length, and the number of manufacturers in the area. 

This denies the idea of agglomeration wherein like businesses attract. Larger manufacturers 

are less likely to exist where there are more manufacturers, but only weakly. Electric 

consumption and sales also weakly, inversely correlate with the number of facilities, but 

electricity costs corelate positively with facility quantity. Thermal energy usage is left 

unexplained by the results. 
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Figure 15: Manufacturing v. IAC Data Correlation Matrix 

Analyzing the energy resource datapoints in comparison to collected IAC data on 

industrial energy consumption, the trend of weak correlations continues. In figure 16, floor 

area weakly and inversely correlates to average power plant nameplate capacity. There is 

also a peculiar weak, inverse correlation between the number of gas power plants and the 

floor area, sales, electricity consumption, and thermal energy consumption. A place that is 

high in gas power may see less presence of manufacturing sites due to the economic benefit 

of the gas plants. Further investigation is required. It is also important to note the weak 

inverse correlation to SIC code and the size of gas wells and the number of coal plus gas 

plants. Certain facilities may make best use of a local gas well, and lower SIC codes could 

be factories that benefit or are more likely to have their own gas well. Additionally, some 

manufacturers may act in a supporting role to these power plants. Parts fabrication, repair, 

and outage support are large industries that power plants need to operate. The more time 

spent offline the less money the utility makes. Therefore, outages become spectacles as 

hundreds if not thousands of people depending on site size to hasten the repair and 

maintenance process. There is also a small r = 0.15 positive correlation between thermal 

energy consumption and the presence of nuclear power. An explanation is unknown but 

can be disregarded due to the small sample size of nuclear power plants. 
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Figure 16: Energy First Half v. IAC Data Correlation Matrix 

Further considering energy data in figure 17, the area of a facility weakly and inversely 

correlates to the number of power stations and sum of nameplate capacity. The number of 

substations in a county weakly and inversely correlates to the size, sales, electrical, and 

thermal energy consumption of a facility. This may imply that high manufacturing density 

leads to more diverse but decreased firm size. Larger facilities benefit from removal of 

urban areas much like larger scale power plants. Further investigation is required to verify. 

The thermal electric ratio has an unexplainable weak correlation with the number of oil 

wells. 

 
Figure 17: Energy Second Half v. IAC Data Correlation Matrix 
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 Consideration of population demographics and IAC factory energy consumption in 

figure 18 reveals far more promising and intriguing results. Areas with higher percentages 

of workers in the energy and raw resource industry weakly correlates to increased facility 

electrical and thermal energy consumption. This may be due to the type of industry in 

support of the energy and raw resource industries, or there is greater energy use 

desensitization. Due to the prevalence of energy in the economy, populations are less averse 

to energy waste since it is so plentifully collected and traded from the locale. Populations 

with higher percentages of only high school workers see a weak positive correlation with 

electrical energy consumption, and the trend goes inverse for bachelor and graduate 

education levels.  

 
Figure 18: Population v. IAC Data Correlation Matrix 

 

Higher total population and median years of occupancy see an inverse relationship 

with electrical energy consumption, but the number of homeowners and percentage 

workforce of manufacturing in a county see a weak positive correlation. The cost of both 

thermal and electrical energy is left mostly unexplained in the assembled correlation 

matrixes. So too is the thermal electric ratio untouched. Ultimately, electrical energy usage 

seems better explained by such a high-level approach than does thermal. Thermal energy 

may be more process-oriented implying its existence at a facility is purely technical, well 
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managed, and requires dedicated skilled labor to operate. In contrast, electricity is a 

commodity and resource to be used and processed making a more social challenge.  

 

Discussion and Conclusion 
The research here raises more questions of why and how than answers. The energy 

connection established in the initial investigation proved to be weaker than expected. But 

demographic data showcased far more potential in predictive power. The research 

conducted within this scope of this body revealed that energy consumption is a complex 

byproduct between many different and difficult to identify interactions between people and 

their environment. In constructing county level profiles of the state of Ohio for industrial 

populations and resources, energy resources, and demographics, the weak agglomerative 

and social aspect of facility energy consumption were brought to light. Small relationships 

between energy use and the collected data were identified and possible explanations were 

proposed. Ultimately, there are still unanswered questions regarding the sources variables 

and their correlations warranting further investigation. 

Identified weaknesses of the analysis are detailed below and justify further 

investigation plus correction through any iterative works. Limited statistical analysis was 

performed on the collected data. Where data was not summed, median values were the 

primary metric of measure to identify data centrality. Where the sample size was 

sufficiently small or large enough mean values are used due to the assumption of a normal 

tendency. Outliers were not filtered but included in the data analysis. This may skew the 

relations and correlations. The Pearson correlation coefficient is limited in scope and only 

identifies linear relationships. Cluster analysis, machine learning decision trees, random 

forests, or neural networks may reveal more insightful or practical results. 

Areas for future research would include addressing the identified weaknesses. 

Additional granularization of the data may yield further intrigue. One such case is the SIC 

codes used. North American Industry Classification System (NAICS) codes are far more 

detailed than SIC which could help differentiate different types of establishments further 

instead of lumping every manufacturer and their energy data under an umbrella term. 

Additionally, breaking down the analysis into an intra-county investigation may yield 

greater findings. Correlation matrix results indicated that energy use is still highly facility 
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specific, and observing more local demographics and characteristics could yield more 

poignant insight. Data transformation is required to truly draw out the relationships at play.  

It is the hope that continued exploration into the human-energy relationship dynamic 

is continued to be researched. Agglomeration of human productivity centers is weakly 

understood. Even more unfortunately, the variables to predict reaction and interaction 

between communities and new projects both manufacturing and energy related are ill 

defined. The energy crisis is both a technical and human challenge. Continuing to 

understand how both interoperate will lead to a brighter future. 
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Appendixes 

Appendix A: Biomass and Hydro Power Plants of Ohio 
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Appendix B: Gas/Oil Well Average Discovery Year: 
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Appendix C: Variable Name Crosswalks 

Manufacturing Data Crosswalk 

 
 

Energy Data Crosswalk 
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