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Resampling and super-resolution of hexagonally sampled images
using deep learning

Dylan Flaute®, Russell C. Hardie?, Hamed Elwarfalli®
#University of Dayton, Department of Electrical and Computer Engineering, Dayton, Ohio, United States

Abstract. Super-resolution (SR) aims to increase the resolution of imagery. Applications include security, medical
imaging, and object recognition. We propose a deep learning-based SR system that takes a hexagonally sampled low-
resolution image as an input and generates a rectangularly sampled SR image as an output. For training and testing, we
use a realistic observation model that includes optical degradation from diffraction and sensor degradation from de-
tector integration. Our SR approach first uses non-uniform interpolation to partially upsample the observed hexagonal
imagery and convert it to a rectangular grid. We then leverage a state-of-the-art convolutional neural network (CNN)
architecture designed for SR known as Residual Channel Attention Network (RCAN). In particular, we use RCAN to
further upsample and restore the imagery to produce the final SR image estimate. We demonstrate that this system
is superior to applying RCAN directly to rectangularly sampled LR imagery with equivalent sample density. The
theoretical advantages of hexagonal sampling are well known. However, to the best of our knowledge, the practical
benefit of hexagonal sampling in light of modern processing techniques such as RCAN SR is heretofore untested. Our
SR system demonstrates a notable advantage of hexagonally sampled imagery when employing a modified RCAN for
hexagonal SR.
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1 Introduction

Super-resolution (SR) is a term for the task of increasing the resolution of low-resolution (LR)
images. The SR task has broad applications in security and surveillance,? medical imaging,’ and
object recognition.* Single-image SR (SISR) is fundamentally challenging because it generally
requires the interpolation of undersampled imagery without access to additional spatial samples
from other frames. When processing LR data acquired directly from a camera, the observation
model includes diffraction blurring and and detector integration effects, in addition to potential
aliasing that results from undersampling.

Effectively addressing the ill-posed SISR problem requires the exploitation of prior statistical
information about the images. Deep learning is a broad class of data-driven approaches to deriving
statistical information. Recently, deep learning-based approaches have pushed the state-of-the-art
for inverse problems in image processing, including but not limited to denoising, deconvolution,
SR, and inpainting.” In the field of SISR, the use of neural networks® and convolutional neural
networks (CNNs) has been widely successful. In CNN-based approaches, convolutional filters
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are learned based on very large datasets of paired LR and high-resolution (HR) images. Exam-
ples of CNN-based approaches to SISR include SRCNN,” FSRCNN,® SCN,” VDSR,!° DRRN,
LapSRN,'> MSLapSRN, '3 ENet-PAT,* MemNet,'* EDSR,'> SRMDNF,'® and RCAN.!” A compre-
hensive survey on deep learning-based SISR approaches is provided in Ref. 18. Deep learning has
also been successful in the field of deblurring. DeepDeblur,!” ED-DSRN,?® GFN,?! and EDSR '
all approach deblurring, mostly in addition to SR, with deep learning.

Although CNN-based approaches to learning and exploiting prior statistical information have
been successful, the approach is still fundamentally bounded by the information present in the sam-
ples. Alternative approaches to advancing the state of SISR examine the sampling. For example,
CAR?? is a deep learning approach to find a more optimal down-sampling function that is easier for
another network to undo. A simpler, theoretically-grounded sampling alternative is to sample on a
hexagonal grid rather than a rectangular grid. This approach has the theoretical motivation that a
hexagonal grid with the same density as the rectangular grid can support a higher cutoff frequency
without introducing aliasing.

Some recent works demonstrate the benefits of hexagonal imagery for processing purposes
by processing the hexagonal image directly. For example, the image classification system Hexa-
Conv?® processes hexagonal images by adapting the Group-equivariant Convolutional Neural Net-
work (G-CNN) architecture®* to leverage the additional symmetries that are found on a hexagonal
grid, yielding improved classification performance at a given parameter budget than baseline on the
natural images in the CIFAR-10 dataset and on the aerial imagery, which is rotation-invariant by na-
ture, in the Aerial Image Dataset (AID).%° The image classification system HexagonNet*® also pro-
cesses hexagonal images directly and increments performance further on the AID dataset as well as
achieving a new state-of-the-art on the ModelNet40 shape classification dataset. And, the authors
of Ref. 27 use hexagonally-defined filters to process omnidirectional imagery for orientation-aware
semantic segmentation. To facilitate future research into this type of processing, the Python library
HexagDLy?® extends the deep learning framework PyTorch? to include efficient hexagonal con-
volutions. The more abstract problem of developing convolution operators for any non-Cartesian
grid is approached by the authors of Ref. 30, who use nearest-neighbor information to index the
convolution operations. Aside from image processing, hexagonally gridded data is also useful for
estimating the supply-demand gap for ride-sharing due to the increased symmetries of the grid.’!
Joint resampling and restoration of hexagonally sampled images using an Adaptive Wiener Filter
has also been explored Ref. 32.

The theoretical advantages of hexagonal sampling are well known. However, hexagonal sam-
pling comes at a cost. Most display devices and image processing algorithms and software today
assume rectangular sample/pixel layouts. Furthermore, to the best of our knowledge, the practical
benefit of hexagonal sampling in light of modern SR processing techniques is heretofore untested.
In this paper, we demonstrate a system for SISR that takes hexagonally sampled LR imagery as
inputs and generates rectangularly sampled SR images as outputs. To make the problem more real-
istic, our observation model includes the effects of diffraction and detector integration for a given
camera system. Our SR approach first uses non-uniform interpolation to partially upsample the
observed hexagonal imagery and convert it to a rectangular grid. We then leverage a state-of-the-
art CNN architecture designed for SR known as Residual Channel Attention Network (RCAN).!”
In particular, we use RCAN to further upsample and restore the imagery to produce the final SR
image estimate. To enrich the RCAN input, we also supply subpixel interpolation distances for



each pixel and feed into the RCAN architecture through a separate input head. This modification
is inspired by the FIFNET architecture for multi-image SR.*?

Since paired hexagonally sampled LR images and rectangularly sampled HR images are not
readily available, we develop an observation model-based approach for generating realistic, full
frame RGB, synthetic data. Our observation model effectively constitutes a “forward model” for
the inverse problem we wish to solve. The observation model leverages a camera-specific optical
transfer function (OTF) that models diffraction and detector integration (based on either hexagonal
or rectangular detectors) for generating our data®*3* as well as a resampling step. We apply the
observation model to the DIV2K SISR dataset® to generate data to train our models so as to be
ready to process real full frame RGB color camera outputs.

We demonstrate that our modified RCAN architecture processing data that was originally sam-
pled hexagonally is superior to applying RCAN directly to rectangularly sampled LR imagery
with equivalent sample density. To make this comparison, we choose a sample density such that
no interpolation is necessary for generating the rectangularly sampled imagery (and thus, there is
no interpolation error). We generate a rectangularly sampled color-imagery dataset from DIV2K
with rectangular detector shape and a hexagonally sampled dataset with hexagonal detector shape.
To restore the rectangular imagery, we train RCAN end-to-end and leverage a pre-trained RCAN
model. Despite having no interpolation error in the input data, the rectangularly-based archi-
tecture still underperforms the hexagonally-based architecture. The implications of our results
are two-fold: First, our system demonstrates the practical benefit of hexagonally sampled im-
agery for image processing, even in the previously untested context of deep learning-based post-
processing. Second, our system reduces the practical drawback of using hexagonally sampled
imagery — namely, that most display devices and image processing software assumes rectangular
sample/pixel layouts — since our system can be used to resample hexagonal imagery to rectangular
grids.

The remainder of this paper is laid out as follows. Section 2 describes the observation model
that is used to generate training and testing data. Section 3 describes the architecture of our ap-
proach to resampling and restoring the imagery produced by that observation model. Section 4
describes the experiments we perform to compare hexagonally sampled imagery and rectanguarly
sampled imagery post-processed with those architectures. Section 5 describes the results of those
experiments. Finally, Section 6 provides our discussion of those results.

2 Observation Model

A block diagram of our observation model is shown in Fig. 1. The model takes an ideal discrete-
space HR image as input and outputs a simulated LR image that approximates a camera sensor
output. The observation model consists of two main parts: an optical transfer function (OTF) to
account for camera optics and detector integration, and a resampling step to simulate the LR sam-
pling pattern of the sensor. We simulate both hexagonal and rectangular sampling by resampling
the blurred HR image onto the appropriate grid. Finally, our model includes independent and ad-
ditive white Gaussian noise with standard deviation o,,. The key parameters of our observation
model are listed in Table 1 for the experimental study presented here. The parameters in Table 1
have been selected to represent a typical acquisition scenario with an RGB camera, with a few
liberties taken for numerical convenience. The wavelengths correspond to the Hamamatsu RGB
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Fig 1 Discrete forward observation model used to provide realistic degradation of ideal images for training and testing
purposes. A pristine HR image is blurred with an impulse-invariant PSF and then resampled according the detector
sampling pattern. Finally, noise is added to produce the LR image.

Table 1 Summary of observation model parameters for the red, green, and blue color channels.

Parameter Wavelength

Ar = 620.0 nm Ag = 540.0 nm Ap = 460.0 nm
F-number F =4.000 F =4.000 F =4.000
Cutoff frequency pe = 0.4032 cyc/pum | p. = 0.4630 cyc/pum | p. = 0.5435 cyc/pum
Nyquist pitch py = 1.240 pm py = 1.080 pym py = 0.9200 pm
HR pitch p = 1.000 pm p = 1.000 pm p = 1.000 pm
Rectangular LR pitch d = 4.000 pm d = 4.000 um d = 4.000 ym
Hexagonal LR pitch 1 Ty = 4.298 um Ty = 4.298 um Ty =4.298 pym
Hexagonal LR pitch 2 Ty = 7.445 pm Ty = 7.445 pm Ty = 7.445 pm
Noise std. o = 1.000 DU o = 1.000 DU o = 1.000 DU

Color Sensor S9702. The f-number is moderate and commonly used for camera lenses. The simu-
lated rectangular detector pitch is within the range of currently available commercial sensors. We
selected the HR pitch so that the rectangular detector pitch would be an integer multiple, to allow
for simple downsampling in modeling the rectangular detector scenario. The hexagonal pitches
were selected to give the same sampling density as the rectangular sampling scenario. Finally the
noise standard deviation has been selected to give a high, but realistic, signal-to-noise ratio (SNR)
of approximately 36 dB for the simulated images. A high SNR was selected because the proposed
study is intended to focus on detector sampling and not noise reduction. Note that we perform the
simulation on three color channels for RGB images to model a full frame RGB color camera and
some of the parameters in Table 1 are wavelength dependent. In the following two subsections we
shall provide further details on the OTF and resampling blocks, respectively.

2.1 Optical transfer function

In this section we discuss the OTF model that accounts for diffraction-limited optics and blurring
from spatial integration of the detector elements. Together, these two components can be combined



to provide the overall OTF model as
H(U,U) = Hdif(u>v)Hdet<u7v)7 (1)

where u and v are the horizontal and vertical spatial frequencies in cycles per unit distance. The
first term, Hg;y, is the OTF for diffraction-limited optics and the second term, H ., accounts for
detector integration.

The OTF component for diffraction assuming a circular pupil function® is given by

2 -1 _ _
Hdif(ﬂ):{ﬂ[cos et pQ} o (2)

0 else

where p = Vu? + v2/p., p. = 1/(AF) is the optical cutoff frequency, A is the wavelength of light,
and F'is the f-number of the optics. Note that the f-number is defined as the ratio of the focal
length of the optics to the effective aperture.?’

The detector component of the OTF accounts for the finite size of the detectors in the camera’s
focal plane array. At the native pixel scale, the detector integration plays only a small role in
degrading the observed imagery. However, when upsampling an image for SR, the native detector
active area will now span multiple HR pixels and play an important and potentially dominant role in
the observation model. The detector OTF can be found by simply taking the 2D Fourier transform
of the detector element shape as described by Hardie et al.>* In our study, we wish to present a
fair comparison between rectangular and hexagonal sampling. To do so, we have elected to make
the active area of both types of detectors the same and have 100% fill factor. This will give rise to
the same signal-to-noise ratio using comparable image acquisition parameters. Furthermore, this
arrangement gives rise to the same sampling density in spatial samples per unit area. The spatial
detector active areas used for the rectangular and hexagonal detectors are shown in Fig. 2. The
specific dimensions of the detectors shown are based on the parameters in Table 1.

The diffraction OTF is shown in Fig. 3 for the parameters in Table 1 for the green channel.
The detector OTFs along with the combined OTFs are shown in Fig. 4 for the green channel. Note
that the detector OTF in Fig. 4(a) has a sinc form corresponding to the Fourier transform of the
square detector shape in Fig. 2(a). and note that the OTF for the hexagonal detector in Fig. 4(b) has
an approximately circularly symmetric form by virtue of the hexagonal detector shape shown in
Fig. 2(b). The combined OTFs that include the diffraction and the detector are shown in Figs. 4(c)
and (d) for rectangular and hexagonal, respectively. One can see from the OTFs that the low-pass
effect of the two different detector types of the same area is quite similar. However, one might
argue that the more radially symmetric OTF shown in Fig. 4(d) is somewhat advantageous: it gives
an imager that employs hexagonal sampling a more angle-independent resolution performance.

The OTF model in Eq. (1) is for a continuous-space image. The continuous-space PSF is given
by the inverse continuous-space Fourier transform (ICSFT) of the OTF in Eq. (1). This may be
expressed as

h(z,y) = ICSFT{H (u,v)}. 3)

To process the discrete high-resolution input frames, as shown in our observation model in Fig. 1,
we employ the impulse-invariant discrete-space equivalent blurring. To do so, we assume our
pristine input images are sampled at the Nyquist rate with a pitch of p. The Nyquist criterion
dictates that 1/p > 2p. = 2/(AF). Equivalently, this means we must have p < AF'/2 to guarantee

5
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Fig 2 Detector shapes based on the parameters in Table 1 for (a) rectangular detectors and (b) hexagonal detectors.

no aliasing.>* An impulse-invariant equivalent discrete-space PSF, hq(ny,n2), may be found by
sampling h(z,y) with a sample spacing of p. This impulse-invariant PSF is applied to produce

Lieg(n1,n2) = Igr(ni, ng) * hg(ng, na), 4)

where * is discrete 2D convolution.

To accommodate full color RGB images, we compute the impulse-invariant PSF for the center
wavelengths of red, green, and blur color channels. The assumed wavelengths are listed in Table 1.
Note that for our simulation parameters the HR grid rate exceeds the Nyquist rate for the red and
green channels, but is is slightly below Nyquist for the blue channel. To address this, we truncate
the theoretical blue OTF model to prevent any aliasing with regard to the impulse invariant filter.
To justify this, note that there is an exceedingly small amount of signal energy beyond the folding
frequency that is truncated. In particular, we computed the total volume of the OTF and the volume
inside the folding frequency of the 1 pm HR sample spacing for the blue channel. The OTF volume
beyond the folding frequency (0.5 cyc/pum) represents only 0.0105% of the total OTF volume (or
a fraction of 0.000105). Visually, note that the blue OTF is very similar to the green OTF shown
in Fig. 4(c) and (d), and the OTF values in the figure are very small near the 0.5 cyc/um folding
frequency. Based on this, we believe this small adjustment to the blue OTF model is negligible and
will not adversely impact the fidelity of the study.

2.2 Spatial sampling

In the previous section, we outlined the PSF blurring model that simulates camera optics and de-
tector integration on the HR image. The next step of the observation model is spatial resampling
of the blurred input image /4., according to the corresponding detector layout. The sampling grids
using the parameters listed in Table 1 are shown in Fig. 5. The HR grid (black) is a dense rectan-
gular Nyquist sampling configuration with spacing p = 1 pm. The pristine input image, [y, is

6
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Fig 5 Sampling grids used in the observation model. The HR grid (black) is a dense rectangular Nyquist sampling
configuration. The LR rectangular sampling grid and associated detectors are shown in blue. The LR hexagonal
sampling grid and associated detectors are shown in red.

assumed to be sampled on this grid, as is the SR output image. The LR rectangular sampling grid
(blue) has a sample spacing of d. In our current experiment we have d = 4p. The hexagonal LR
grid (red) can be thought of as two interlaced rectangular grids with spacing of 7} in the horizon-
tal dimension and 75 in the vertical dimension. The interlacing offset is effectively a 1/2 sample
spacing shift in the horizontal and vertical dimensions. To form an ideal hexagonal sampling pat-
tern, we require that 7, = v/37}.%® Approximate hexagonal grids are also sometimes employed>?
where the relationship between 75 and 7} is a rational fraction, or even simply a 2-to-1 grid where
T5 = 27T). These approximately hexagonal grids have less perfect frequency packing properties,
but may provide other benefits with regard to fabrication or post processing.

Based on the LR sample positions, we use bicubic interpolation on the image /4.4 to produce
I} . Since Iz, is on a Nyquist grid, the downsampling interpolation here is very accurate and
unhindered by aliasing. We then add independent white Gaussian noise with a standard deviation
of ,, = 1 digital unit (DU). Finally, we quantize the intensity to 2% levels to form the final LR
image, denoted [, i. This process is repeated for each of the color channels. Note that we are
simulating a full frame RGB color camera, and not color filter mosaic based images. The spatial
sampling density of the LR rectangular sampling grid is 1/d*. For the LR hexagonal grid the
sampling density is 2/(T1T3) = 2/(v/3T2). By setting the sampling densities of the rectangular
and hexagonal patterns equal, we obtain the relationship

=24 )

P
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Fig 6 Frequency domain spectral packing using the parameters in Table 1 for (a) rectangular sampling and (b) hexag-
onal sampling. The circles represent isocontours of the OTF at 10% of the peak value.

The relationship in Eq. (5) is used to set the LR hexagonal grid in relation to the LR rectangular
grid in Table 1.

As we saw in Sec. 2.1, the detector OTF for a hexagonal detector is not that much different
from a comparably sized rectangular detector. The real benefit of hexagonal sampling is the result
of efficient frequency packing and reduced aliasing. Isotropic rectangular sampling causes the
continuous frequency spectrum to repeat in a rectangular pattern every 1/d in the horizontal and
vertical frequency axis. With hexagonal sampling, the continuous frequency spectrum repeats in a
hexagonal pattern. The repetition occurs every 2/7 along the horizontal frequency axis and every
2/T; along the vertical frequency axis. That pattern is itself repeated with an offset of 1/77 and
1/T, along the respective frequency axes. The frequency packing for the parameters in Table 1
is shown in Fig. 6. The circles represent the isocontours of the OTF at a level of 10% of the
maximum. Clearly the overlapping circles show that there is a large amount of potential aliasing in
both the rectangular and hexagonal sampling cases. However, the intrusion of the repeating spectra
around DC frequency at © = v = 0 cycles/um is demonstrably less in the case of the hexagonal
sampling in Fig. 6(b) compared with rectangular in Fig. 6(a).

We can quantify the improved hexagonal frequency packing two different ways. First, con-
sider that to sample exactly at the Nyquist rate with an isotropic rectangular sampling grid, we
require d = 1/(2p.). For a hexagonal sensor, the equivalent requirement can be shown to be
T, = 1/(+v/3p.), based on the frequency domain geometry. We can combine these relationships
with those for sampling density. This tells us that the sampling density of a rectangular grid for
Nyquist sampling is .

Srect = 75 = 47 (©)
The equivalent Nyquist sampling density for hexgonal sampling is given by
2 6p;

V3TE V3
9

Shea: = (7)
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Fig 7 The RCAN architecture for 2x upsampling. (a) The original architecture. (b) Modified architecture that adds a

subpixel distance array to aid in hexagonal image SR.

Using these equations, we see that for the same p., the hexagonal spatial sampling grid can be
13.40% less dense. Another way to describe the potential benefits of hexagonal sampling is to
consider the different cut-off frequency each sampling method can accommodate with no aliasing
given the same sampling density. Performing this calculation using Egs. (6) and (7), it can be
shown that hexagonal sampling can accommodate a cut-off frequency that is 7.46% larger than
rectangular. These theoretical advantages of hexagonal sampling are well known. However, to the
best of our knowledge, the practical benefit of hexagonal sampling in light of modern processing
techniques such as RCAN SR is heretofore untested. Thus, we believe it is very interesting to see if
CNN based SR processing can exploit the advantages of hexagonal sampling in a significant way.

3 Super-Resolution for Hexgonally Sampled Images

In this section, we describe our approach for resampling and restoring rectangular and hexagonal
imagery. Both approaches rely on the RCAN architecture!” for SR. We briefly describe the RCAN
architecture before defining the rectangular and hexagonal system.

3.1 RCAN architecture

The RCAN architecture is a convolutional SR architecture for integer scale factors. It consists
of stacks of learned convolutional filtering layers and upscaling. The architecture varies slightly
depending on scale factor. When relevant, the architecture that performs L x upsampling will be
notated as RCAN (L x). A high-level diagram of RCAN (2x) is shown in Fig. 7(a). Our modified
RCAN architecture is shown in Fig. 7(b), which we shall explain later in Sec. 3.2.1.

We denote the input of RCAN generally as /;z. This input consists of the LR three-channel
RGB color images. The standard input head of RCAN consists of a single convolutional layer that
extracts feature channels from the input. That is,

FO = Hinput(ILR)y (8)

where Hijyp,, denotes the learned convolutional layer and Fj denotes the learned “shallow feature.”
The body of RCAN uses Residual-In-Residual (RIR) deep feature extraction. The RIR body con-
sists of G “residual groups” followed by a “long skip connection” (LSC). Denoting the gth residual
group as H, (1 < g < G), we can formulate the RIR body as

Fpr = Fy + Convysc [HG(HG—l(Hl(FO)))]7 (9)

10



where Convygc is a convolutional layer at the tail of the RIR.

Each residual group H, is composed of N, Residual Channel Attention Blocks (RCABs), a
single convolutional layer, and a residual connection. Each RCAB first performs learned convo-
lutions and then performs channel attention. Channel attention adaptively rescales channels in the
feature map to exploit interdependencies across channels and emphasize important feature chan-
nels. The output of the channel attention mechanism is residually connected to the input of the
RCAB. It is claimed that the channel attention mechanism allows the network to emphasize more
useful features and makes the network more discriminative.!’

The tail of the RCAN architecture consists of an upsampling module and a final restoration
module. Note that the output is a three-channel rectangularly sampled RGB SR image. For up-
sampling, the RCAN architecture avoids the transposed convolution layers seen in encoder-decoder
architectures® and opts for the light-weight ESPCN/PixelShuffle strategy.>® An additional convo-
lutional layer is used on the output. So, the SR image is formed as

[SR = ConVout<Hup(FDF))a (10)
where H,, denotes the upsampling module and Conv,,; denotes the output convolutional layer.

3.2 Hexagonal inverse model

For processing hexagonally sampled imagery, we develop a system that uses nonuniform interpo-
lation to partially upsample the observed hexagonal imagery and convert it to a rectangular grid,
and then feeds this imagery into an RCAN (2x)-based network. The overall proposed system is
shown in Fig. 8(a). As references, we also apply the standard RCAN (4x) architecture to rect-
angularly sampled imagery with the same sampling density as shown in Fig. 8(b) and we apply a
directly comparable rectangular version of our system to the same rectangularly sampled imagery
as shown in Fig. 8(c).

To motivate our system, ideally we would feed the LR hexagonal data directly into RCAN, and
then RCAN would jointly resample and restore the image. Unfortunately, this is not practical with
hexagonal imagery since the upsampling module in RCAN is designed to input and output images
with the same aspect ratio and images on a hexagonal grid do not have the same “aspect ratio” as
images on a rectangular grid (in terms of pixel counts). It is non-trivial to modify the upsampling
module in RCAN to handle different aspect ratios and we are not aware of any existing methods to
this end. Thus, we cannot simply feed the hexagonal image into the network and learn the inverse
function. A naive solution would be to resample the hexagonal imagery onto a rectangular grid of
the same sample density as the input. However, this solution would lose the extra spatial frequency
content in the hexagonal samples.

Our system addresses both of these problems by using a two-step approach. In the first step, we
use nonuniform interpolation to upsample /; r onto a rectangular grid with twice the input image’s
sample density. We call the upsampled image /5. The sample spacing of Iy is d/2. Increasing
the sampling density in this step increases the cutoff frequency of the grid and is sufficient to
encode the frequency content of the hexagonal image (as limited by the hexagonal grid structure’s
cutoff frequency). In the second step, [ is fed into the trained RCAN (2x) network described
in Sec. 3.1 and illustrated in Fig. 7(b). We train the network on (I%p, Isr) pairs to upsample /5,
onto a rectangular grid with twice the sample density of I, (i.e., a sample spacing of d/4) while
simultaneously correcting for interpolation error introduced in the first step of our system. The
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Fig 8 (a) The two-stage hexagonal SR system with LR hexagonal input and SR output. (b) Standard RCAN (4 x)
processing used for LR rectangular imagery. (c) The two-stage rectangular SR system.

training process is described in detail later, in Sec. 4. The output of the system overall is Igp,
which is the output of the RCAN as defined by Eq. (10).

3.2.1 Sub-pixel distance matrix

The nonuniform interpolation step used by the method in Fig. 8(a) creates interpolation error that
varies spatially. Some interpolated pixel locations are located very near the original hexagonal
data and others are much farther. Inspired by the FIFNET sub-pixel registration channel,*® we
incorporate a sub-pixel distance matrix input to the network to quantify the alignment between the
hexagonally sampled output of the observation model and the interpolated image that is fed into
our modified RCAN shown in Figs. 8(a) and 7(b). This aids our modified RCAN system in dealing
with the spatially varying interpolation error.

A formalization of the distance matrix follows. Let X be the set of spatial coordinates on the
hexagonal lattice with elements x; ; € R%. Similarly, let the spatial coordinates of the samples in
the M x N non-uniformly interpolated image be denoted r,,,, € R?. Then the distance matrix
D € RM*¥ ig defined such that

Dy = min_ |1y, — X5 5|, (1D
Xi’j

In other words, D,, ,, encodes how close the pixel m, n in the non-uniformly interpolated image is
to the nearest sample in the hexagonally sampled input. A sample of the subpixel distance matrix
is shown in Fig. 9. The hexagonal sampling grid, X, is shown in blue. The interpolated sampling
grid is shown in red. The distance value for every interpolated sample, D,, ,,, is indicated by the
grayscale of the pixel behind the red sample. Note that red samples that are located near a blue
sample have a small distance value (i.e., dark pixel). We expect these red samples to have less
interpolation error. The opposite is true for red samples located far form the nearest blue sample.
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Fig 9 Sample subpixel distance matrix with the hexagonal grid and interpolation grid overlaid. The hexagonal sam-
pling grid, X, is shown in blue. The rectangular sampling grid is shown in red. The distance array, D, is represented
by the pixel grayscale values.

The distance matrix D is fed into RCAN via a separate input head. This separate input head
consists of a stack of convolutional layers with a large receptive field. The output of these convo-
lutional layers is connected to the output of the traditional input head such that Eq. (8) becomes

Fo = Hinpu(ILr) + Hais(D), (12)

where Hg denotes the head for the sub-pixel distance matrix input. The precise architecture of
H i 1s described in Table 2. The convolutions are padded and biases is used. Note that D is shown
as an input to the system in the system flowchart in Fig. 8(a), and the distance head is shown in our
modified RCAN architecture illustrated in Fig. 7(b).

Table 2 Distance matrix head archigecture.‘
Channels In | Channels Out | Filter Size

1 64 7TxT7
64 64 Tx T
64 64 TXT

4 Experimental Setup

In this section, we describe our methodology for comparing hexagonally sampled imagery and
rectangularly sampled imagery with deep learning-based post-processing for super-resolution. We
are interested in comparing our proposed system for processing hexagonally sampled imagery with
systems for processing rectangularly sampled imagery for super-resolution in order to demonstrate
the benefits of hexagonal sampling. We also consider several baseline systems.
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* Hex + NI (4x). For hexagonally sampled data, we use nonuniform interpolation (NI) to
upscale by a factor of 4 (with respect to the input sample density) onto a rectangular grid.

* Rect + Bic (4x). For rectangularly sampled data, we use bicubic interpolation (Bic) to
upscale by a factor of 4.

e Hex + NI (4x) + Wiener. To the Hex + NI (x4) system, we add Wiener filtering*’ for
restoration.

* Rect + Bic (4x) + Wiener. To the Rect + Bic (4x) system, we add Wiener filtering for
restoration.

* Hex + NI (2x) + RCAN (2x). As proposed in Sec. 3, for hexagonally sampled data, we
use NI to upscale by a factor of 2 (with respect to sample density) onto a rectangular grid
and then feed the imagery into an RCAN (2 x) network. (See Fig. 8(a).)

* Rect + Bic (2x) + RCAN (2x). To mirror Hex + NI (2x) + RCAN (2 x) with rectangularly
sampled data, we use bic to upscale by a factor of 2 and then feed the imagery into an RCAN
(x2) network. (See Fig. 8(c).)

* Rect + RCAN (4 x). For rectangularly sampled data, we use an RCAN (4 x) network. (See
Fig. 8(b).)

Nonuniform interpolation is implemented with MATLAB’s scatteredInterpolant function and bicu-
bic interpolation is implemented with MATLAB’s interp2 function. For the systems that use
Wiener filtering, one Wiener filter®” is used for each RGB channel using the observation model’s
PSF for that channel. The noise-to-signal ratio (NSR) parameter of the Wiener filters are fit by
finding an NSR parameter between 10~ and 1 that minimizes mean squared error (MSE) between
the output of the Wiener filter and the desired image for every image in the training data (indepen-
dently for each channel). The per-channel NSR values are averaged across the training data. The
training methodology for RCAN networks and the evaluation protocol are described in the rest of
this section.

4.1 Data and preprocessing

For data, we require a high-resolution dataset with which to simulate realistic camera imagery
using the observation model described in Sec. 2. We choose the DIV2K dataset,> which consists
of 2K resolution natural imagery. The full DIV2K dataset consists of 800 training images, 100
validation images, and 100 testing images. However, SR truth for the testing images has not been
publicly released. Following Ref. 15, we report out testing performance using a portion of the
DIV2K validation set. In particular, our train split consists of DIV2K images 1-800, our validation
split consists of DIV2K images 801-810, and our test split consists of DIV2K images 811-900.
This approach ensures a clean separation of data for training, validation, and testing.

During preprocessing, the scatteredInterpolant MATLAB function is used to resample the
hexagonally imagery to the rectangular grid in preprocessing for NI systems and the interp2 MAT-
LAB function is used to resample rectangularly sampled imagery for bic systems. We replace any
NaN values that arise during this step with “0.” For data augmentation, random left-right flip, ran-
dom up-down flip, and transposing are used to generate all eight possible combinations of flipping
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and rotation. Data augmentation is applied before applying the observation model. That is, for
each image in the original dataset, we transform it into eight images. The observation model is
applied to each transformed image separately. As a result of this, each epoch of training for ex-
periments with data augmentation consists of a pass through all of the augmentation sets, meaning
every image in the DIV2K training images is seen 8 times per epoch.

4.2 Training hyperparameters

Our RCAN networks are trained with default settings from the original RCAN network: we also
use 10 residual groups and 10 residual blocks. We consider both randomly initializing our networks
and initializing our networks with publicly available pre-trained RCAN (2x) and RCAN (4x)
network parameters. These pre-trained networks were originally trained to upsample images that
were downsampled with bicubic interpolation. It should be noted that it is not a priori obvious
that using pre-trained weights is effective. We chose to consider pre-training because the original
RCAN networks found that initializing the networks RCAN (3x) and RCAN (4 x) with the pre-
trained parameters from RCAN (2x) is effective, showing that the weights from one model are
broadly applicable to slightly different scales. We consider whether a similar intuition applies
when the scales are held constant but the task is slightly changed (namely, realistic degradations
are applied to the imagery). This choice is considered in the ablation study in Sec. 5.3. The
sub-pixel distance matrix input head described in Table 2 is randomly initialized in all cases.

A patch size of 96 x 96 pixels is used for training. The batch size is set to 16 (patches). The
Adam optimizer*! is used with a learning rate of 10~*. The hexagonal model is trained for 200
epochs (1600 passes through the data). The learning rate is decayed by a factor of 0.5 at steps
120 and 160. It is found that a much shorter training schedule is appropriate for the rectangular
model. By adjusting the schedule based on the validation learning curve, we arrived at training
length of 23 epochs with decay at steps 8 and 15. Presumably, this is because the rectangular
model, initialized with pre-trained weights, needs only to learn to adapt to the optical degradation
whereas the hexagonal model needs to also undo resampling noise from the process interpolating
rectangularly gridded samples.

Network training and testing is performed with an Ubuntu 18.04 workstation with an AMD
Ryzen 7 2700X Eight-Core Processor with a maximum clock speed of 4 GHz. It is equipped
with two NVIDIA GeForce RTX 2080 Ti Graphics Processing Units (GPUs). Both GPUs are
used during training. Training the RCAN (2 x) models as described takes approximately one day.
Training the RCAN (4 x) model takes approximately four hours. Testing on our 90 image test set
takes approximately one minute.

4.3 Loss function

We consider three loss functions: MSE, L1 loss, and the Charbonnier loss function. For a loss
function, the traditional choice is MSE, since this effectively seeks to maximize the signal-to-noise
ratio (SNR). The formula for MSE is given by

L(y,9) = mean((y — 9)°), (13)

where y is the true image, 7 is the estimated image, the squaring is performed elementwise, and
mean is taken across all pixels in each batch. While MSE is theoretically sound, empirical studies
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in Ref. 15 found the L1 loss to be superior to MSE for training EDSR and the original RCAN
networks were trained with an L1 loss.!” The formula for L1 loss is given by

L(y, 9) = mean(|y — g1). (14)

While MSE and L1 are common, we are inspired to consider a Charbonnier loss function used in
the joint deblurring and super-resolution model ED-DSRN.?° This loss function has been shown to
perform well in a task that is similar to the one at hand here. The formula for the Charbonnier loss
function is

L(y,y) = mean(+/(y — 4)% + €2 — ¢). (15)

A visual comparison of the Charbonnier loss with the L1 loss function and the MSE loss function
is given in Fig. 10. The advantage of the Charbonnier loss function is that the function is smooth
when error is close to 0 like MSE, but it grows linearly when the error is large like L1. We
believe this improves global convergence during training. In our application, the intensity values
of images y and y are scaled to an approximate range of 0 to 255. For this range we have observed
good results using € = 4, and this value is used in all of our experiments.

10

L(y,9)
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Fig 10 Plot of the Charbonnier loss as a function of the error term y — ¢ with € = 4 (red), the L1 loss function (blue),
and the MSE loss function (green).

4.4 Evaluation criteria

We consider two evaluation metrics: peak signal-to-noise ratio (PSNR) and Structural Similarity
(SSIM) index.*> We consider both metrics in two settings: First, we convert the image to grayscale
by evaluating the Y channel of the YCbCr color space and evaluate our metrics. Second, we use
full-color RGB imagery. In all cases, we shave 6 pixels from each edge of the image to avoid
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evaluating border effects. Note that our results are not directly comparable with other prior results
in the literature because of the use of the camera-parameter based observation model employed
here.>® We believe the observation model provides more realistic data, but it is not yet widely used
in the literature. Note we report PSNR values in dB.

5 Experimental Results

In this section, we describe the results of the hexagonal and rectangular image processing systems
on our test split (DIV2K images 811-900) as well as provide an ablation study of our architectural
choices. We provide both quantitative and qualitative analysis. We consider the saved checkpoint
with the best validation PSNR on the Y channel.

5.1 Quantitative Results
We calculate the PSNR and SSIM as described in Sec. 4.4. The results are given in Table 3.

Table 3 Results on our test split (DIV2K images 811-900). “NI” refers to nonuniform interpolation and “Bic” refers

to bicubic interpolation. The bold face entries represent the best results for the given metric.

Y channel RGB
PSNR (dB) SSIM PSNR (dB) SSIM
Hex + NI (4 %) 25.424 0.70895 23.944 0.69016
Hex + NI (4 x) + Wiener 26.460 0.75731 24958 0.73770
Hex + NI (2x) + RCAN (2x) 29.204 0.84425 27.692 0.82957
Rect + Bic (4 %) 25.826 0.72621 24.348 0.70796
Rect + Bic (4 x) + Wiener 26.060 0.73410 24.587 0.71642
Rect + Bic (2x) + RCAN (2x) 29.004 0.83735 27.494 0.82254
Rect + RCAN (4x) 29.073 0.83939 27.556 0.82442

On our test split, our proposed Hex + NI (2x) + RCAN (2x) shown in Fig. 8(a) achieves
a PSNR of 29.204 and an SSIM of 0.84425 when evaluated on the Y channel and 27.692 and
0.82957, respectively, when evaluated on full RGB. The equivalent system using rectangularly
sampled imagery, Rect + Bic (2x) + RCAN (2x), achieves a PSNR of 29.004 and an SSIM of
0.83735 on the Y channel and 27.494 and 0.82254, respectively, when evaluated on full RGB. The
purely RCAN-based Rect + RCAN (4x) system shown in Fig. 8(b) achieves a PSNR of 29.073
and an SSIM of 0.83939 on the Y channel and 27.556 and 0.82442, respectively, on full RGB.
This means that the hexagonal sampled imagery outperforms the rectangular sampled imagery,
whether the rectangular imagery is processed by the end-to-end deep learning Rect + RCAN (4 x)
system (+.131 PSNR and +.00486 SSIM on Y channel, and +.136 and +.00515, respectively,
on RGB) or by the two-stage Rect + Bic (2x) + RCAN (2x) system that mirrors the hexagonal
processing (+0.200 PSNR and +-.00690 SSIM on Y channel, and +.198 and +-.00703, respectively,
on RGB). Moreover, this shows that for rectangular imagery, using only RCAN as in the Rect
+ RCAN (4x) system is superior to using bicubic interpolation with RCAN as in the Rect +
Bic (2x) + RCAN (2x) system (+0.069 PSNR and +.00204 SSIM on Y channel, and 40.062
and +.00188, respectively, on RGB). To ground these differences, note that the qualitative results
shown in Fig. 11 represent a difference of 0.281 PSNR and 0.008896 SSIM between the center and
right columns, which are similar magnitudes as these averaged results. As can be seen in Table 3,
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the trends observed in the quantitative Y channel results are very similar to the trends in the RGB
results, so we focus on Y channel results for the remainder of this section.

Comparing our RCAN systems against the baseline interpolation and interpolation + Wiener
systems in Table 3, our RCAN-based post-processing achieves higher performance. Every RCAN-
based system outperforms every baseline system by at least +2.544 PSNR and .08004 SSIM.
Comparing baseline systems across sampling type in Table 3, we find that 4x interpolation of
rectangularly sampled imagery is better than 4x interpolation of hexagonally sampled imagery.
To be precise, Rect + Bic (4x) outperforms Hex + NI (4x) by .402 PSNR and 0.01726 SSIM.
However, post-processing with a Wiener filter shows the benefits of hexagonally sampled imagery:
Hex + NI (4x) + Wiener outperforms Rect + Bic (4x) + Wiener by .400 PSNR and .02321 SSIM.

5.2 Qualitative Results

For a qualitative comparison between our proposed Hex + NI (2x) + RCAN (2x) system and
the Rect + RCAN (4 x) system, close-ups of images from our test split are provided in Figs. 11-
16. In all of these figures the truth is shown in the left column, the output of Hex + NI (2x)
+ RCAN (2x) processing is shown in the middle column, and Rect + RCAN (4x) outputs are
shown in the rightmost column. The full images are shown in the top row and regions of interest
(ROIs) are highlighted in subsequent detail rows. Themes throughout these images include more
faithful rendering of text (Figs. 12, 15), improved rendering of support beams in small windows
and doors (Figs. 11, 13, 14), and more faithfully capturing textures with high-spatial-frequency
lines (Figs. 15, 16).

5.3 Ablation Study

In this section, we present results from our ablation study. Since these experiments were actually
carried out during the model selection phase, only Y channel scores on our validation split (DIV2K
images 801-810) are reported.

5.3.1 Hexagonal system

For the hexagonal model’s ablation, we are interested in the effects of the loss function, the sub-
pixel distance matrix, the augmentation scheme, and the choice of pre-trained weights (scratch vs
RCAN (2x) vs RCAN (4 x)). The results of these experiments are described in Table 4.

Regarding choice of the loss functions described in Sec. 4.3, we find that the Charbonnier loss
function is the most effective. The L1 loss function imposes a penalty of 0.004 in PSNR for a
score of 29.578. The MSE loss function is found to be much worse, imposing a penalty of 0.031
in PSNR for a score of 29.551. For the remainder of the experiments, we consider the Charbonnier
loss function.

Going down the rows of Table 4, in the final block we successively remove features from the
architecture. First, we remove the distance head described in Sec. 3.2.1. A penalty of 0.003 in
PSNR is observed for a score of 29.579. Next, we do not use data augmentation and adjust the
schedule somewhat to account for the fact that each epoch now contains fewer images (see Sec. 4).
A further penalty of 0.132 in PSNR is observed for a score of 29.447.

Next, we consider the effects of using pre-trained weights as discussed in Sec. 4. First, we
consider using the pre-trained RCAN (4 x) weights instead of the pre-trained RCAN (2x) weights.
This tests the effect of using some pre-trained weights, even if the weights are sub-optimal. Note
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Fig 11 DIV2K Image 823. The truth is shown in the left column, the output of Hex + NI (2x) + RCAN (2x)
processing is shown in the middle column, and Rect + RCAN (4 x) outputs are shown in the rightmost column. On
the first detail row, the hexagonal model captures some notion of a horizontal line corresponding to the decks of the

ship, which is absent from the rectangular model. On the second detail row, the hexagonal model renders the brown
door better than the rectangular model.
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Fig 12 DIV2K Image 825. On the first detail row, the “D” and “E” are rendered more faithfully by the hexagonal
model than the rectangular. On the second detail row, the yellow band in the flag is rendered more faithfully by the
hexagonal system. On the final detail row, the top row of letters (particularly the “P,” “D,” “R,” and “O”) are more
faithfully rendered by the hexagonal system.
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Fig 13 DIV2K Image 830. On the first detail row, the hexagonal model captures all vertical supports while the
rectangular does not. On the second detail row, the rectangular model mis-colors the band between the lines on the
building while the hexagonal model does not. On the third detail row, the hexagonal model captures the vertical
support in the window while the rectangular model renders a blur. On the fourth detail row, the hexagonal model
generates interference patterns in the water whereas the rectangular model is dominated by one direction of line. On
the fifth detail row, the hexagonal rendering is clear whereas the rectangular rendering is blurry. On the sixth detail
row, the hexagonal model captures more detail between the orange and the gray areas than the rectangular model.
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Fig 14 DIV2K Image 836. On both rows, the hexagonal model captures more detail of the vertical and horizontal
supports of windows.
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Fig 15 DIV2K Image 891. In the first detail row, the hexagonal model captures the detail of vertical supports in a

window more faithfully than the rectangular model. In the second and third detail rows, the hexagonal model more
faithfully renders letters in text.



Fig 16 DIV2K Image 900. The hexagonal system faithfully renders the vertical lines in the grill of the car whereas the
rectangular image is clearly aliased.

Table 4 Hexagonal system ablation study.

Name Schedule PT Aug Dist Loss | PSNR (dB)
Hex {120, 160,200} | x2 Yes Yes Charb | 29.582
Hex L1 {120, 160,200} | x2 Yes Yes L1 29.578
Hex MSE | {120, 160,200} | x2 Yes Yes MSE 29.551
-Dist {120, 160,200} | x2 Yes No Charb 29.579
-Aug {300, 400,501} | x2 No No Charb 29.447
-x2+x4 {300, 400, 501} | x4 No No Charb 29.432
-PT {300, 400,501} | No No No Charb 29.211

the pixel shuffle layer is randomly initialized for this experiment since the 4 x pixel shuffle layer
would return the wrong image size. A penalty of 0.015 in PSNR is observed from the last step in
the ablation for a score of 29.432. This stands in contrast to no pre-training at all, where a further
penalty of 0.221 in PSNR is observed for a score of 29.211. So, using sub-optimal pretrained
weights is found to be better than training from scratch. This is consistent with the result from
Ref. 17, where using one scale of RCAN weights was found to be effective for initializing a training
for another scale.

To recap the results of the hexagonal ablation study, we find performance drops the most when
we remove augmentation (—0.132 in PSNR) and when we train from scratch (—0.221 in PSNR).
Consequently, we believe that using pre-trained weights (despite the weights not representing how
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Table 5 Rectangular model ablation study.
Name Schedule PT Aug Loss | PSNR (dB)
Rect {8, 15,23} x4 Yes Charb 29.556
+Long | {120, 160,200} | x4 Yes Charb 29.543
-X4+x2 {8,15,23 } x2 Yes Charb 29.446
-PT {120, 160,200} | No Yes Charb 29.306
-Aug {300, 400,501} | No No Charb 29.010

to denoise the image) and using data augmentation are especially important to our success. We
note, however, that our adaptation of the training schedule for data augmentation is imperfect,
which makes it more difficult to directly compare experiments before and after removing data
augmentation. A better schedule for non-augmented training would be {960, 1280, 1600} to match
the number of examples seen in total during training with augmentation. However, since less data
is seen overall, such a long schedule is not necessarily required in practice and we do note that the
learning curve still appears to be mainly converged.

5.3.2 Rectangular system

Next, we perform an ablation study for our rectangular system. Note that we only perform ablation
for Rect + RCAN (4x) and not Rect + Bic (2x) + RCAN (2x) because it provided the best
performance. Here, there are fewer design decisions to be made. In particular, there is no use for
a sub-pixel distance matrix since every sample is perfectly aligned with the sample grid (i.e., there
is no interpolation noise). On the other hand, we consider the effects of shortening the training
schedule (see Sec. 4). The ablation study is summarized in Table 5.

Going down the rows of Table 5, we first consider the effect of training schedule. When we
train for the same length as the hexagonal model, a penalty of 0.013 in PSNR is observed for a
score of 29.543. Next, we consider the effects of pre-training in the same manner as with the
hexagonal model. When we swap to sub-optimal weights, a penalty of 0.097 in PSNR is incurred
for a score of 29.446. When we train from scratch, a further penalty of 0.140 in PSNR is incurred
for a score of 29.306. Finally, when we remove augmentation, we incur another penalty of 0.296
in PSNR for a score of 29.010. Again, we find that using data augmentation and using some form
of pre-training are especially significant to our performance.

6 Discussion

We demonstrate an approach to resampling hexagonal imagery to a rectangular grid that retains
the benefits of hexagonally sampled imagery. This approach uses non-uniform interpolation to
resample the hexagonal data onto an upsampled rectangular grid. We then apply RCAN, a state-
of-the-art deep learning-based super-resolution system, for restoration and further SR processing.
To aid the RCAN processing, we also code the distance of each interpolated sample to the nearest
original hexagonal sample and provide this as auxiliary input features to RCAN. To demonstrate
the approach, we use a camera degradation model that simulates diffraction and detector integration
of a hexagonal camera given a high-resolution rectangularly sampled ”truth” image.

On the DIV2K SR dataset, we find that the hexagonal system outperforms applying RCAN di-
rectly on rectangularly sampled imagery with the same sample density, no interpolation noise, and
modeled rectangular camera degradations in terms of PSNR and SSIM. Images from the holdout
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set are provided that show clearly visible differences between the outputs generated by the hexag-
onal system and by the rectangular system. We also find that the hexagonal system outperforms an
identical two-stage system that ingests and is trained on realistic rectangular imagery.

Theoretically, hexagonal sampling encodes more frequency information. We posit that this
theoretical benefit of hexagonal sampling is significant for our success in achieving superior SR
performance. We would expect to see some amount of benefit to hexagonal sampling for a wide
range of sensor parameters, provided that the corresponding rectangular camera system is under-
sampled. However, we live in a predominantly rectangularly sampled world: computer monitors,
cell phone screens, and printers all usually use rectangularly sampled images. As a result, the
typical tools for processing imagery assume rectangular sampling grids. We believe that our sys-
tem provides a bridge between hexagonal samples and rectangular processing that reduces the loss
incurred by converting to the rectangular sampling scheme.

Future work should consider directly learning to jointly resample, restore, and increase the
resolution of the imagery within one end-to-end deep learning system. Since we report that the
rectangular system based on RCAN (4 x) outperforms the two-stage rectangular system signifi-
cantly, we posit that an end-to-end system for hexagonal imagery will be similarly more perfor-
mant. Developing such a system is a challenging problem because there is no clear-cut method for
resampling the hexagonal imagery to a rectangular grid with convolutions or a PixelShuffle layer.
Theoretically, however, such a method is advantageous because it avoids introducing interpolation
noise in the resampling step. Hopefully the availability of libraries like HexagDLy?® will inspire
future researchers to pursue this problem.
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the decks of the ship, which is absent from the rectangular model. On the second
detail row, the hexagonal model renders the brown door better than the rectangular
model.

DIV2K Image 825. On the first detail row, the “D” and “E” are rendered more
faithfully by the hexagonal model than the rectangular. On the second detail row,
the yellow band in the flag is rendered more faithfully by the hexagonal system.
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DIV2K Image 830. On the first detail row, the hexagonal model captures all ver-
tical supports while the rectangular does not. On the second detail row, the rect-
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DIV2K Image 836. On both rows, the hexagonal model captures more detail of the
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of vertical supports in a window more faithfully than the rectangular model. In the
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in text.

16 DIV2K Image 900. The hexagonal system faithfully renders the vertical lines in
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