
University of Dayton University of Dayton

eCommons eCommons

Honors Theses University Honors Program

4-1-2024

Development of a Machine Learning-Based Program to Measure Development of a Machine Learning-Based Program to Measure

Cell Proliferation Cell Proliferation

Adam J. Jones
University of Dayton

Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses

eCommons Citation eCommons Citation
Jones, Adam J., "Development of a Machine Learning-Based Program to Measure Cell Proliferation"
(2024). Honors Theses. 446.
https://ecommons.udayton.edu/uhp_theses/446

This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It
has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more
information, please contact mschlangen1@udayton.edu, ecommons@udayton.edu.

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/uhp_theses
https://ecommons.udayton.edu/uhp
https://ecommons.udayton.edu/uhp_theses?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/uhp_theses/446?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mschlangen1@udayton.edu,%20ecommons@udayton.edu

Development of a Machine

Learning-Based Program to

Measure Cell Proliferation

Honors Thesis

Adam Jones

Department: Chemical and Materials Engineering

Advisor: Russell K. Pirlo, PhD

April 2024

Development of a Machine

Learning-Based Program to

Measure Cell Confluency
Honors Thesis

Adam Jones

Department: Chemical and Materials Engineering

Advisor: Russell K. Pirlo, PhD

April 2024

Abstract
Many tools have emerged to investigate the functioning of biological systems, especially when in contact
with foreign substances. In vitro procedures are often used due to their cost effectiveness and suitability for
high-throughput experiments. These procedures collect basic measurements, such as toxicity and
biocompatibility, that provide insight into the compatibility and safety of a substance. In vitro toxicity tests
are favored for their expediency, affordability, and consistent outcomes. Quantitative methodologies, like
colorimetric and fluorometric assays, offer objectivity and high-throughput analysis. However, they require
lengthy incubation times and only provide a single metric. Microscopy-based methods provide more
information in terms of cell morphology and localization and can be captured quickly without the need for
reagents and incubation. Yet, this method requires specialized expertise and is prone to subjective biases
and variations based on the region of interest. Given the limitations of microscopy-based approaches, there
is a growing interest in leveraging machine learning (ML) to streamline and enhance cell analysis. This
study aims to develop an ML-based approach to evaluate cell count and confluency from microscope
images and compare its performance to the colorimetric assay, CCK8. The CCK8 assay, which releases a
dye when metabolized by live cells, served as the benchmark for comparison. The ML-based method
developed using Ilastik, CellProfiler, and Python, segments microscopy images into cell and background
regions, followed by erosion for cell boundary enhancement. CellProfiler subsequently quantifies the cell
count and confluency from the processed images. This novel ML-based approach offers expedited analysis,
while mitigating the inherent subjectivity and error associated with conventional techniques. This approach
also eliminates the need for excess reagents and waste associated with quantitative assays. In conclusion,
this technique presents an alternative in scenarios where traditional assays are impractical, such as with low
cell counts or when cells must be reused.

Acknowledgements
I would like to thank Dr. Russell Pirlo for his mentorship and guidance throughout this project. I would
also like to thank the University Honors Program for funding and support and the Department of Chemical
and Materials Engineering for allowing me to use their facilities.

Table of Contents

Abstract Title Page

Introduction 1

Methods & Results 4

Cell Culture 5

Cell Images 5

Initial Image Processing 6

Image Processing 7

Fourier Transform of Microscope Image 8

Erosion of Microscope Image 8

Erosion of Ilastik Probability Map 10

Computational Validation 11

CCK8 Validation 14

Data Analysis 16

Discussion 16

Conclusions 17

References 18

Appendix I 21

Code A1 21

Code A2 23

Code A3 24

Code A4 25

Code A5 27

Code A6 28

P a g e | 1

Introduction

Many tools have emerged to investigate the functioning of biological systems,

especially when in contact with foreign substances. These tools include several methods,

including dye exclusion, colorimetric, and fluorometric assays [1], as well as microscopy

techniques, such as cell counting with a hemocytometer [2,3,4] and examination of cell

morphology [5,6]. One specific area in which these tools are utilized is the study of

biomaterials, which are materials interfaced with biological systems for a range of

medical purposes [7]. Since these materials must not cause harm to the patient, rigorous

testing must be performed to ensure potential safety before they are even approved for

human clinical trials [7]. Although animal studies can accurately predict the efficacy and

safety of a new biomaterial, these tests require a significant cost and a high level of care

for the animals [8]. Therefore, in vitro tests are often used as a preliminary investigation

of a novel biomaterial [9].

Due to various factors, in vitro tests are suitable for initial cell-based experiments.

These tests are superior due to their capacity for high-throughput experiments [10,11],

which allows for various conditions to be tested at once. In addition, in vitro experiments

are rapid and cost-effective [5,8], allowing a successful biomaterial or treatment to reach

animal trials quickly without a significant financial contribution. These tests can also

measure various outcomes, such as cell function, enzyme activity, and receptor binding

[12]. After one of these outcomes is determined, in vitro assays can determine the

mechanism of action for a specific cellular phenotype [10,13]. Therefore, this method is a

powerful tool to study the initial response of an organism to a particular substance or

event.

One specific area where in vitro tests are often used is in the study of cell toxicity.

Toxicity is defined as a disruption in the biochemical function of a cell, where the effect

can range in severity from barely detectable to fatal [5]. Toxicity tests are used in the first

stage of biomedical device testing to assess the biocompatibility and safety of the

materials used [7]. There are two main types of cytotoxicity tests. An assay provides a

single absorption, fluorescence, or luminescence metric that can be measured in bulk

using a plate reader, whereas a stain discriminates between live and dead cells

individually and requires counting. One example of an assay is the MTT assay, which

P a g e | 2

detects the metabolic activity of cells by the conversion of substrates, affecting a change

in the light absorption of the cell media [9]. The PicoGreen and AlamarBlue assays can

also determine cytotoxicity through a plate reader by measuring green and blue

fluorescence when these reagents bind to specific parts of the cell [2]. As a result, these

assays are used to differentiate dead from live cells, allowing for the evaluation of a

biomaterial’s biocompatibility. Other reagents can be used to stain cells and determine

live and dead counts via count. For example, trypan blue and propidium iodide are only

absorbed in dead cells but require cell counting due to not emitting a readable signal [2].

The large number of effective toxicity measurement methods shows that toxicity can be

effectively deduced using in vitro methods.

Although in vitro toxicity tests are effective, they have numerous limitations.

These tests require a specific incubation time, temperature, and medium to be effective

and eliminate confounding variables [14]. For cell stains that require cell counting, a

standard method is through the use of a hemocytometer. This device has a number of

glass chambers with specific area and depth [3]. The cell count in one of these chambers,

which is completed manually, is extrapolated to determine the overall cell count. Due to

the amount of manual labor involved, this method is time-consuming, prone to human

error, and requires a narrow cell concentration to be effective [3,4]. Automated methods,

such as the Vi-CELL® XR from Beckman Coulter, eliminate the human aspect of cell

counting, but still require specific reagents and have a higher cost [4]. Consequently,

microscopy-based approaches have been explored to provide more detailed information

about the cells without the need for incubation.

Microscope technology has rapidly developed in its ability to discriminate

between small objects, which means it is applicable in the study of cells. The axial

resolution for a confocal microscope is a few hundred nanometers, which allows for

individual cells to be easily distinguished [15]. As a result, cell viability can also be

determined using microscopy as altered morphology is another indication of toxicity [5].

Viability can also be measured by examining the colony formation ability or lysosomal

integrity of a group of cells [15]. To obtain more detailed images to examine these factors

or for morphology analysis, specific microscopy techniques, such as stimulated emission

depletion microscopy (STED), are often used [15]. Scanning electron microscope (SEM)

P a g e | 3

images also give more information about the surface morphology of a cell [6]. Due to the

high amount of light needed to perform in-depth microscopy techniques [15] and the

gold-plating of samples needed to create SEM images [6], neither method is a viable

option for intermediate testing as the cells may not survive the assessment. In addition,

identifying specific morphological features of live and dead cells requires a great deal of

expertise. Given these limitations, there is a growing interest in leveraging machine-

learning (ML) to streamline and enhance the analysis of microscope images of cells.

ML-based methods seek to improve image analysis with automation, reducing

user time and effort, increasing throughput, and reducing user bias and error, improving

statistical power [16]. Common applications of ML include car navigation, movie

recommendation, and face identification [17]. This wide array of complex tasks shows

that ML will easily handle the task of cell counting. Several groups have already utilized

ML to count and classify cells based on type. For example, one group used ML to

develop a “you only look once” method that could accurately identify and count different

types of blood cells [18]. Another group utilized ML to develop a program called HALO,

which counted and sorted specific cells within a tissue [19]. These tools involve

supervised learning methods, which can label objects after training [17]. Many open-

source software packages, such as Ilastik, use this type of ML to segment cell microscope

images.

Ilastik is a program that generates probability maps of cell images. The Broad

Institute has combined this program with CellProfiler to count Chinese Hamster Ovary

cells and determine confluence [20]. This study aims to build upon this approach to

evaluate cell count and confluency from TIME GFP cell images. The results from this

method will be compared with CCK8, which is a reputable colorimetric toxicity assay

[21]. This comparison will determine the ML-based method’s efficacy and facilitate the

development of a novel cell counter.

P a g e | 4

Methods & Results

 Fig. 1 describes the steps in the processing of a microscope image using the ML-

based program. This follows the methods of Karhohs [20] while also adding pre-

processing of the microscope image and processing of the Ilastik image steps. The steps

in the gray-shaded boxes correspond to parts of the development process as shown in Fig.

2.

P a g e | 5

Fig. 2 depicts the overall methods for the development of an ML-based program

to measure cell confluency. Since the goal of this project was to develop a working

program, the Methods & Results section delineates each step of the process with its

outcome.

Cell Culture

 Time GFP cells were thawed and seeded in a T25 flask. The cells were cultured at

37 degrees Celsius in Time GFP media. The media was changed every other day and

cells were passaged every week, reseeding at a density of 50000 cells in a T25 flask with

5 mL of media. The cells were monitored for three weeks.

Cell Images

 Cells images were taken every time the media was changed, which led to images

of various cell densities. Four methods were used to capture cells each day they were fed,

yielding seven viable images for each type of image. All images were taken at 10x

P a g e | 6

magnification. The types of images were Brightfield (BF) Dark, BF Light, Phase Dark,

Phase Light, and GFP. The dark images were focused so the cells showed up darker than

the background, whereas the light images were focused so the cells showed up lighter

than the background. The GFP images were not used because not all parts of the cell

fluoresced, which would yield inaccurate confluency results. The phase images were not

used because many images had halos, as shown in Fig. 3, which Ilastik would improperly

identify as cells.

Initial Image Processing

 The methods described by Karhohs [20] were recreated. This involved first

creating a probability map in Ilastik as shown in Fig. 4. This map was generated by

training the software through specifying which areas contained cells and which were

background. Next, a ‘pipeline’ was developed in CellProfiler to determine the cell count

and confluency. This pipeline involved ‘RescaleIntensity’, ‘ColorToGray’, and

‘IdentifyPrimaryObjects’ modules. The RescaleIntensity module enhances certain areas

to allow for easier cell segmentation. The ColorToGray module was necessary to convert

the image to grayscale so it could be processed through the IdentifyPrimaryObjects

module. That module calculated cell count and confluency by implementing a cell

diameter range. Since dead cells will appear smaller in the microscope, this range ensures

that only live cells will be counted. The resulting output of the IdentifyPrimaryObjects

module is shown in Fig. 5.

P a g e | 7

Recreating Karhohs's previous methods yielded the CellProfiler output shown in

Fig. 5. The calculated cell count of 473 had a 414.13% error from the manual

calculations, and the calculated cell confluency of 45.0% had an 847.37% error from the

manual calculations. This showed that other imaging processing methods were needed to

make this method effective.

Image Processing

 Numerous image-processing techniques were employed to improve the efficacy

of this ML-based method. The code for all of these operations is shown in Appendix I.

The first image in the BF Dark folder was used for all preliminary image processing.

P a g e | 8

Fourier Transform of Microscope Image

 The microscope image was passed through a Fourier transform before entering

into Ilastik (Code A1). The resulting Fourier-transformed image is shown in Fig. 6.

Although the human eye could more easily distinguish the cells, this transformation

processed an inaccurate Ilastik probability map. This resulted in an improper

identification of the cells, as shown in Fig. 7. The calculated cell count of 14 had a

84.78% error from the manual calculations, and the calculated cell confluency of 98.6%

had a 1975.79% error from the manual calculations.

Erosion of Microscope Image

 A variety of erosion and dilations conditions were performed on the microscope

image. This included eroding and dilating the image at kernels of 3, 5, 7, 9, and 11 (Code

P a g e | 9

A2). The operations that were performed on the microscope image are shown in Fig. 8.

Kernel 7 erosion produced the image with the most distinctive cells with the least

distortion, so this condition was used for future image processing. The kernel 7 eroded

image was processed using Ilastik to predict cell count and confluency as shown in Fig.

9. The calculated cell count of 87 had a 5.43% error, which was much closer than any

other pre-processing methods. On the other hand, the confluency of 21.4 had a percent

error of 350.53% due to the blocky nature of the predicted cells. Therefore, this method

was not effective either for identifying cell count.

P a g e | 10

Erosion of Ilastik Probability Map

 Since processing of the raw microscope image was yielding inaccurate

CellProfiler outputs, processing of the Ilastik probability map was explored as an

alternative method. Erosions and dilations were performed with a kernel value of 7 after

the image was processed through Ilastik (Code A3). The CellProfiler outputs from this

method were analyzed for clear borders between cells. Example outputs using erosions of

1, and 2 are shown in Fig. 10. These methods produced much more accurate CellProfiler

outputs, so more cell images were processed using this method.

P a g e | 11

Computational Validation

 Seven viable BF Dark and BF Light images were all analyzed using Ilastik,

followed by a variety of erosions (Code A4), and then analyzed in CellProfiler to

determine cell count and confluency. Each image was processed through 1, 2, and 3

erosions (E1, E2, E3) at kernel 7 and every condition was processed separately in

CellProfiler. The conditions were processed in CellProfiler first using a cell pixel

diameter range shown in Table 1 and second using a cell pixel diameter range shown in

Table 2. The diameters in Table 1 were proposed to capture all of the viable cells in

image 1, which had a relatively small number of cells. The diameters in Table 2 were

proposed to capture all of the viable cells in image 3, which had a relatively large number

of cells.

Table 1. Initial Pixel Diameter Range

P a g e | 12

Table 2. Refined Pixel Diameter Range

The cell count and confluency were validated using codes shown in Appendix I.

The first code utilized the cv2 module (Code A5), which was used to color over the cells

using the computer mouse. Fig. 11 shows an example output from this method. This code

also counted the number of objects created, which corresponded to the cell count. This

image was saved, and another code (Code A6) was used to determine the cell confluence

in the image.

Tables 3 and 4 illustrate the percentage error elicited from the initial and refined

image processing techniques for cell count. The Dark/Light label refers to the type of

Brightfield image that was taken. The images processed using the initial pixel diameter in

Table 1 do not have a label before Dark/Light, whereas the images processed using the

refined pixel diameter in Table 2 are labeled as ‘ref’ before the Dark/Light label. The

number after ‘E’ specifies the number of erosions performed of the Ilastik output.

Although there were many conditions with a large percent error, the refDark E1, refDark

P a g e | 13

E2, and refDark E3 conditions produced the lowest error with values of 12.13 ± 5.81%,

12.63 ± 14.75, and 11.49 ± 10.47, respectively. The refDark E1 and E2 also produced the

best fit slope values closest to 1 with values of 1.006 and 1.1021.

Tables 3 and 4. Initial and Refined Error of Cell Counting

 Tables 5 and 6 illustrate the percent error elicited from the initial and refined

image processing techniques for confluency. Every image processing technique was

much less effective for calculating confluency than cell count. This was shown with the

lowest percentage errors of 22.50 ± 20.68% for the Dark E3 condition and 22.74 ±

20.24% for the refDark E3 condition. This was also shown through the best fit slopes as

the slope closest to 1 was 0.818 from the refLight E1 condition.

P a g e | 14

Tables 5 and 6. Initial and Refined Error of Confluency Calculations

CCK8 Validation

 The cell count measuring capabilities of the program were also validated using a

CCK-8 assay. Two calibration curves at high and low concentrations were generated to

validate the replicability of the CCK8 assay in a 24-well plate. The low concentration

curve included points of 1000, 2000, 3000, 4000, 5000, and 6000 cells per well. The high

concentration curve included points of 10000, 20000, 25000, 50000, 75000, and 100000

cells per well. The low calibration curve yielded a slope of -5E-6. The negative slope

showed that this assay was inaccurate. The high calibration curve yielded an equation of

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 =
𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 + 0.0319

6 × 10−6

The slope from this equation was very similar to previous calibration curves, so it was

used to calculate cell count in the experimental samples.

For the experimental samples, cells were seeded in each well of a 24-well plate

with 3000 cells in each well of the first column, 5000 cells in the second column, 10000

cells in the third column, 20000 cells in the fourth column, 40000 cells in the fifth

P a g e | 15

column, and 60000 cells in the sixth column. The 20000-cell count was selected for being

the seeding number in an experiment performed by Cai et al. [22] and the 40000 and

60000 were selected for being double and triple this amount. The 3000, 5000, and 10000

cell counts were selected for their adherence to a previous CCK8 absorbance calibration

curve. The cells were incubated for three hours, and the absorbance values were

collected. The predicted cell counts from the CCK8 assays were calculated from these

absorbance values and the calibration curve. The predicted cell counts using the ML-

based program were calculated using the procedure from the Computational Validation

section for only BF Dark images at 1, 2, and 3 erosions. The refined pixel diameter

ranges in Table 2 were used for processing in CellProfiler.

 Table 7 depicts the error of the CCK8 assay on determining cell count. The error

was high at lower cell counts, such as 3000 and 5000 cells per well, whereas it decreased

as the cell concentration increased. Table 8 describes the error of the ML-based program

in determining the cell count of the same wells tested using the CCK8 assay. The results

for this method were the opposite, as the ML-based program had relatively low errors of

up to 10000 or 20000 cells per well but had greater errors in the 40000 and 60000 cell

wells.

Table 7. Error of CCK8 Assay

P a g e | 16

Table 8. Error of ML-Based Program on a 24-well Plate

Data Analysis

The percentage error for the cell count and confluency for computational

validation were both calculated in Google Sheets. R2 values and linear fit slopes were

calculated using Microsoft Excel. The same analysis was performed for the CCK8

validation experiment.

Discussion

 Computational validation of the ML-based program proved that three imaging

methods were the most effective: refDark E1, refDark E2, and refDark E3. The refDark

E1 condition had a comparable average error to the other two conditions but had the

lowest standard deviation by far. Therefore, this condition had the most consistent error,

which could be potentially predicted and eliminated by determining the relationship

between error and cell amount. Although this seems promising, this condition had a best

fit slope of 0.7736, which is much lower and farther from 1 than the refDark E2 and

refDark E3 slopes of 1.006 and 1.0121, respectively. This was due to the processing of

image 2, which had the highest actual cell count. When processing this image, the

refDark E1 cell count was 18.92% too low, the refDark E2 cell count was 0.27% too

high, and the refDark E3 cell count was 5.41% too high. In addition, the refDark E2

method only produced an ineffective CellProfiler output in one image, whereas the

refDark E3 method produced two ineffective CellProfiler outputs. Due to an accurate best

P a g e | 17

fit slope and low error at higher cell counts, the refDark E2 method was the most

effective method.

 The results of this experiment are consistent with previous literature. Erosion has

been previously used in cell segmentation to separate overlapping cells [23]. Therefore,

the cell count should become more accurate until whole cells are eroded. This was seen in

the E3 condition, where more ineffective CellProfiler maps were produced due to over-

erosion of the Ilastik probability map.

 The CCK8 assay was ineffective at lower cell concentrations, but its accuracy

increased as cell count increased. Using the ML-based program on the same cells

produced the opposite results as the lower cell counts had lower error, whereas the higher

cell counts had higher error. Although the CCK8 assay is more sensitive than other

metabolic assays such as MTT [24], the ML-based program must have a higher

sensitivity at lower cell concentrations. The lower accuracy of the ML-based method at

higher cell counts contradicted the results of the computational validation experiment.

This result could be explained by the use of a 24-well plate, which has a recommended

seeding density of 50000 cells per well [25]. When the cell concentration per plate

approaches this, the cell plate will be at confluency. Any excess cells that divide will be

suspended in solution. The ML-based method works by taking an image of only the cells

attached to the bottom. As a result, any excess cells will not be captured and factored into

the cell count calculations. This affirms that the ML-based method will have a saturation

point, especially when using low surface area containers.

Conclusions

 The results of this experiment proved that the CCK8 assay and ML-based

program occupy different niches in the calculation of cell count. The ML-based program

has a higher sensitivity and can more accurately predict lower cell concentrations,

whereas the CCK8 assay does not have a saturation point and can more accurately predict

higher cell concentrations. Therefore, these two methods can be used in tandem for

experiments that require a large range of cell concentrations in multi-well plates whose

absorbances can be read in a plate reader. For larger surface areas and unorthodox

containers, the ML-based program, specifically the refDark E2 method, offers an

P a g e | 18

accurate, rapid, and low-cost approach to determine cell count. This experiment validated

the efficacy of an ML-based program that determines cell confluency and demonstrated

that the program rivals and even in some instances exceeds the CCK8 assay in its

accuracy.

References

(1)

Ramasamy, S.; Pakshirajan, K. 15 - Product Evaluation: Cytotoxicity Assays. In

Biomedical Product and Materials Evaluation; Mohanan, P. V., Ed.; Woodhead

Publishing, 2022; pp 373–408. https://doi.org/10.1016/B978-0-12-823966-7.00024-4.

(2)

Wiegand, C.; Hipler, U.-C. Methods for the Measurement of Cell and Tissue

Compatibility Including Tissue Regeneration Processes. GMS Krankenhhyg Interdiszip

2008, 3 (1), Doc12.

(3)

Absher, M. CHAPTER 1 - Hemocytometer Counting. In Tissue Culture; KRUSE, P. F.,

PATTERSON, M. K., Eds.; Academic Press, 1973; pp 395–397.

https://doi.org/10.1016/B978-0-12-427150-0.50098-X.

(4)

Cadena-Herrera, D.; Esparza-De Lara, J. E.; Ramírez-Ibañez, N. D.; López-Morales, C.

A.; Pérez, N. O.; Flores-Ortiz, L. F.; Medina-Rivero, E. Validation of Three Viable-Cell

Counting Methods: Manual, Semi-Automated, and Automated. Biotechnology Reports

2015, 7, 9–16. https://doi.org/10.1016/j.btre.2015.04.004.

(5)

Kirkpatrick, C. J.; Mittermayer, C. Theoretical and Practical Aspects of Testing Potential

Biomaterialsin Vitro. Journal of Materials Science: Materials in Medicine 1990, 1 (1),

9–13. https://doi.org/10.1007/BF00705347.

(6)

Zhang, J.-Z.; Saggar, J. K.; Zhou, Z.-L.; Bing-Hu. Different Effects of Sonoporation on

Cell Morphology and Viability. Bosn J Basic Med Sci 2012, 12 (2), 64–68.

(7)

https://doi.org/10.1016/B978-0-12-823966-7.00024-4
https://doi.org/10.1016/B978-0-12-427150-0.50098-X
https://doi.org/10.1016/B978-0-12-427150-0.50098-X
https://doi.org/10.1016/j.btre.2015.04.004
https://doi.org/10.1007/BF00705347

P a g e | 19

Rogero, S. O.; Malmonge, S. M.; Lugão, A. B.; Ikeda, T. I.; Miyamaru, L.; Cruz, Á. S.

Biocompatibility Study of Polymeric Biomaterials. Artificial Organs 2003, 27 (5), 424–

427. https://doi.org/10.1046/j.1525-1594.2003.07249.x.

(8)

Jain, A. K.; Singh, D.; Dubey, K.; Maurya, R.; Mittal, S.; Pandey, A. K. Chapter 3 -

Models and Methods for In Vitro Toxicity. In In Vitro Toxicology; Dhawan, A., Kwon,

S., Eds.; Academic Press, 2018; pp 45–65. https://doi.org/10.1016/B978-0-12-804667-

8.00003-1.

(9)

Kamal, A. F.; Iskandriati, D.; Dilogo, I. H.; Siregar, N. C.; Hutagalung, E. U.; Susworo,

R.; Yusuf, A. A.; Bachtiar, A. Biocompatibility of Various Hydoxyapatite Scaffolds

Evaluated by Proliferation of Rat’s Bone Marrow Mesenchymal Stem Cells: An in

Vitro Study. Medical Journal of Indonesia 2013, 22 (4), 202–208.

https://doi.org/10.13181/mji.v22i4.600.

(10)

Yoon, M.; Campbell, J. L.; Andersen, M. E.; Clewell, H. J. Quantitative in Vitro to in

Vivo Extrapolation of Cell-Based Toxicity Assay Results. Critical Reviews in

Toxicology 2012, 42 (8), 633–652. https://doi.org/10.3109/10408444.2012.692115.

(11)

Radio, N. M.; Mundy, W. R. Developmental Neurotoxicity Testing in Vitro: Models for

Assessing Chemical Effects on Neurite Outgrowth. NeuroToxicology 2008, 29 (3), 361–

376. https://doi.org/10.1016/j.neuro.2008.02.011.

(12)

Supplements, I. of M. (US) and N. R. C. (US) C. on the F. for E. the S. of D. Categories

of Scientific Evidence—In Vitro Data. In Dietary Supplements: A Framework for

Evaluating Safety; National Academies Press (US), 2005.

(13)

Tennant, R. W.; Margolin, B. H.; Shelby, M. D.; Zeiger, E.; Haseman, J. K.; Spalding,

J.; Caspary, W.; Resnick, M.; Stasiewicz, S.; Anderson, B.; Minor, R. Prediction of

Chemical Carcinogenicity in Rodents from in Vitro Genetic Toxicity Assays. Science

1987, 236 (4804), 933–941.

https://doi.org/10.1046/j.1525-1594.2003.07249.x
https://doi.org/10.1016/B978-0-12-804667-8.00003-1
https://doi.org/10.1016/B978-0-12-804667-8.00003-1
https://doi.org/10.13181/mji.v22i4.600
https://doi.org/10.13181/mji.v22i4.600
https://doi.org/10.3109/10408444.2012.692115
https://doi.org/10.1016/j.neuro.2008.02.011

P a g e | 20

(14)

Youdim, K. A.; Dobbie, M. S.; Kuhnle, G.; Proteggente, A. R.; Abbott, N. J.; Rice-

Evans, C. Interaction between Flavonoids and the Blood–Brain Barrier: In Vitro Studies.

Journal of Neurochemistry 2003, 85 (1), 180–192. https://doi.org/10.1046/j.1471-

4159.2003.01652.x.

(15)

Schneckenburger, H.; Weber, P.; Wagner, M.; Schickinger, S.; Richter, V.; Bruns, T.;

Strauss, W. s. l.; Wittig, R. Light Exposure and Cell Viability in Fluorescence

Microscopy. Journal of Microscopy 2012, 245 (3), 311–318.

https://doi.org/10.1111/j.1365-2818.2011.03576.x.

(16)

Jordan, M. I.; Mitchell, T. M. Machine Learning: Trends, Perspectives, and Prospects.

Science 2015, 349 (6245), 255–260. https://doi.org/10.1126/science.aaa8415.

(17)

Kan, A. Machine Learning Applications in Cell Image Analysis. Immunology & Cell

Biology 2017, 95 (6), 525–530. https://doi.org/10.1038/icb.2017.16.

(18)

Alam, M. M.; Islam, M. T. Machine Learning Approach of Automatic Identification and

Counting of Blood Cells. Healthcare Technology Letters 2019, 6 (4), 103–108.

https://doi.org/10.1049/htl.2018.5098.

(19)

Hvid, H.; Skydsgaard, M.; Jensen, N. K.; Viuff, B. M.; Jensen, H. E.; Oleksiewicz, M.

B.; Kvist, P. H. Artificial Intelligence-Based Quantification of Epithelial Proliferation in

Mammary Glands of Rats and Oviducts of Göttingen Minipigs. Toxicol Pathol 2021, 49

(4), 912–927. https://doi.org/10.1177/0192623320950633.

(20)

Karhohs, K. CellProfiler & Ilastik: Superpowered Segmentation. Broad Institute:

Carpenter-Singh Lab. https://carpenter-singh-lab.broadinstitute.org/blog/cellprofiler-

ilastik-superpowered-segmentation (accessed 2024-04-09).

(21)

https://doi.org/10.1046/j.1471-4159.2003.01652.x
https://doi.org/10.1046/j.1471-4159.2003.01652.x
https://doi.org/10.1111/j.1365-2818.2011.03576.x
https://doi.org/10.1111/j.1365-2818.2011.03576.x
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1038/icb.2017.16
https://doi.org/10.1049/htl.2018.5098
https://doi.org/10.1049/htl.2018.5098
https://doi.org/10.1177/0192623320950633
https://carpenter-singh-lab.broadinstitute.org/blog/cellprofiler-ilastik-superpowered-segmentation
https://carpenter-singh-lab.broadinstitute.org/blog/cellprofiler-ilastik-superpowered-segmentation

P a g e | 21

Jiao, G.; He, X.; Li, X.; Qiu, J.; Xu, H.; Zhang, N.; Liu, S. Limitations of MTT and

CCK-8 Assay for Evaluation of Graphene Cytotoxicity. RSC Adv. 2015, 5 (66), 53240–

53244. https://doi.org/10.1039/C5RA08958A.

(22)

Cai, L.; Qin, X.; Xu, Z.; Song, Y.; Jiang, H.; Wu, Y.; Ruan, H.; Chen, J. Comparison of

Cytotoxicity Evaluation of Anticancer Drugs between Real-Time Cell Analysis and

CCK-8 Method. ACS Omega 2019, 4 (7), 12036–12042.

https://doi.org/10.1021/acsomega.9b01142.

(23)

Wang, Z. A New Approach for Segmentation and Quantification of Cells or

Nanoparticles. IEEE Transactions on Industrial Informatics 2016, 12 (3), 962–971.

https://doi.org/10.1109/TII.2016.2542043.

(24)

Xiong, J.; Xiao, H.; Zhang, Z. An Experimental Research on Different Detection

Conditions between MTT and CCK-8. Acta Laser Biology Sinica 2007, 16 (5), 559.

(25)

Useful Numbers for Cell Culture - US.

https://www.thermofisher.com/us/en/home/references/gibco-cell-culture-basics/cell-

culture-protocols/cell-culture-useful-numbers.html (accessed 2024-04-11).

Appendix I

Code A1. Fourier Transform

import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft2, ifft2, fftshift, ifftshift
import tifffile
import os

def low_pass_filter(image, cutoff_frequency):
 # Compute 2D Fourier Transform
 image_fft = fft2(image)

 # Shift zero frequency component to the center
 image_fft_shifted = fftshift(image_fft)

 # Get image dimensions

https://doi.org/10.1039/C5RA08958A
https://doi.org/10.1021/acsomega.9b01142
https://doi.org/10.1021/acsomega.9b01142
https://doi.org/10.1109/TII.2016.2542043

P a g e | 22

 rows, cols = image.shape

 # Create a mask for low-pass filtering
 mask = np.ones((rows, cols))
 center = (rows//2, cols//2)
 x, y = np.ogrid[:rows, :cols]
 mask[(x - center[0])**2 + (y - center[1])**2 >

cutoff_frequency**2] = 0

 # Apply the mask to the shifted Fourier Transform
 image_fft_shifted_filtered = image_fft_shifted * mask

 # Shift back to the original position
 image_fft_filtered = ifftshift(image_fft_shifted_filtered)

 # Inverse Fourier Transform to get the filtered image
 filtered_image = np.abs(ifft2(image_fft_filtered))

 return filtered_image

Get file path from the user
file_path = input("Enter the file path of the TIFF image: ")

Load the image using tifffile
image = tifffile.imread(file_path)

Set cutoff frequency (adjust as needed)
cutoff_frequency = 30

Apply low-pass filter
filtered_image = low_pass_filter(image, cutoff_frequency)

Specify the output directory
output_directory = r"C:\Users\jones\Documents\Pirlo

Lab\Thesis\2023.8.30 BF Dark Cells"

Specify the output file name
output_file_name = "filtered_image.tif"

Create the full output file path
output_file_path = os.path.abspath(os.path.join(output_directory,

output_file_name))

Display original and filtered images
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(image, cmap='gray')
plt.title('Original Image')

plt.subplot(1, 2, 2)
plt.imshow(filtered_image, cmap='gray')
plt.title('Filtered Image (Low-pass)')

P a g e | 23

Save the filtered image
tifffile.imwrite(output_file_path, filtered_image)

Show the plot
plt.show()

print(f"Filtered image saved to {output_file_path}")

Code A2. Erosion and Dilation of Microscope Image

import cv2
import numpy as np
import matplotlib.pyplot as plt

def apply_erosion_dilation(image_path):
 # Read the image
 image_color = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)

 # Convert the color image to grayscale
 image_gray = cv2.cvtColor(image_color, cv2.COLOR_BGR2GRAY)

 # Apply Erosion and Dilation
 # kernel size is altered to test how each kernel size looks.
 kernel_size = 7
 kernel = np.ones((kernel_size, kernel_size), np.uint8)
 image_eroded = cv2.erode(image_gray, kernel, iterations=1)
 image_dilated = cv2.dilate(image_eroded, kernel, iterations=1)

 # Display only the eroded and dilated images
 plt.figure(figsize=(10, 4))

 plt.subplot(1, 2, 1)
 plt.imshow(image_eroded, cmap='gray')
 plt.title('Eroded Image')
 plt.axis('off')

 plt.subplot(1, 2, 2)
 plt.imshow(image_dilated, cmap='gray')
 plt.title('Dilated Image')
 plt.axis('off')

 plt.show()

Get the image file path as input
image_path = input("Enter the path of the image: ").strip('"')

Apply erosion and dilation and display the images
apply_erosion_dilation(image_path)

P a g e | 24

Code A3. Erosion and Dilation of Ilastik Image

import cv2
import numpy as np
import matplotlib.pyplot as plt
import tifffile

def main():
 # Input the image path
 image_path = input("Enter the path to the image: ").strip('"')

 # Load the image
 try:
 image = tifffile.imread(image_path)
 except ImportError:
 print("Error: The 'imagecodecs' package is required to read

TIFF files with LZW compression.")
 print("Please install the package using: pip install

imagecodecs")
 return
 except Exception as e:
 print("Error: Could not read the image. Please check the

file path.")
 print("Exception:", e)
 return

 if image is None:
 print("Error: Could not read the image. Please check the

file path.")
 return

 print("Image shape:", image.shape) # Print the shape of the

loaded image

 # Separate channels
 channel1 = image[:,:,0]
 channel2 = image[:,:,1]

 # Define the kernel size for erosion and dilation
 kernel_size = 7
 kernel = np.ones((kernel_size, kernel_size), np.uint8)

 # Apply erosion and dilation to each channel separately
 erosion1 = cv2.erode(channel1, kernel, iterations=2)
 dilation1 = cv2.dilate(channel1, kernel, iterations=2)
 erosion2 = cv2.erode(channel2, kernel, iterations=2)
 dilation2 = cv2.dilate(channel2, kernel, iterations=2)

 # Display the images
 plt.figure(figsize=(12, 6))

P a g e | 25

 # Channel 1
 plt.subplot(2, 3, 1)
 plt.imshow(channel1, cmap='gray')
 plt.title('Channel 1 (Original)')
 plt.axis('off')

 plt.subplot(2, 3, 2)
 plt.imshow(erosion1, cmap='gray')
 plt.title('Erosion 1')
 plt.axis('off')

 plt.subplot(2, 3, 3)
 plt.imshow(dilation1, cmap='gray')
 plt.title('Dilation 1')
 plt.axis('off')

 # Channel 2
 plt.subplot(2, 3, 4)
 plt.imshow(channel2, cmap='gray')
 plt.title('Channel 2 (Original)')
 plt.axis('off')

 plt.subplot(2, 3, 5)
 plt.imshow(erosion2, cmap='gray')
 plt.title('Erosion 2')
 plt.axis('off')

 plt.subplot(2, 3, 6)
 plt.imshow(dilation2, cmap='gray')
 plt.title('Dilation 2')
 plt.axis('off')

 plt.tight_layout()
 plt.show()

if __name__ == "__main__":
 main()

Code A4. Variable Erosions Used in Final Analysis

import cv2
import numpy as np
import matplotlib.pyplot as plt
import tifffile
import os

def main():
 # Input the image path
 image_path = input("Enter the path to the image: ").strip('"')

P a g e | 26

 # Load the image
 try:
 image = tifffile.imread(image_path)
 except ImportError:
 print("Error: The 'imagecodecs' package is required to read

TIFF files with LZW compression.")
 print("Please install the package using: pip install

imagecodecs")
 return
 except Exception as e:
 print("Error: Could not read the image. Please check the

file path.")
 print("Exception:", e)
 return

 if image is None:
 print("Error: Could not read the image. Please check the

file path.")
 return

 print("Image shape:", image.shape) # Print the shape of the

loaded image

 # Separate channels
 channel1 = image[:, :, 0]

 # Define the kernel size for erosion and dilation
 kernel_size = 7
 kernel = np.ones((kernel_size, kernel_size), np.uint8)

 # Prompt the user to enter the number of iterations for erosion
 iterations = int(input("Enter the number of iterations for

erosion: "))

 # Apply erosion to Channel 1
 erosion1 = cv2.erode(channel1, kernel, iterations=iterations)

 # Display the erosion1 image
 plt.imshow(erosion1, cmap='gray')
 plt.axis('off')

 # Prompt the user to enter the path and filename to save the

erosion1 image
 save_path = input("Enter the path to save the erosion1 image:

").strip('"')
 filename = input("Enter the filename for the erosion1 image

(include extension, e.g., .jpg): ").strip('"')
 output_file = os.path.join(save_path, filename)
 plt.savefig(output_file, bbox_inches='tight', pad_inches=0)

 plt.show()

P a g e | 27

if __name__ == "__main__":
 main()

Code A5. Manual Determination of Cell Areas

import cv2
import numpy as np

Function to calculate confluency
def calculate_confluency(region_area, total_image_area):
 confluency = (region_area / total_image_area) * 100
 return confluency

Function to handle mouse events
def draw_region(event, x, y, flags, param):
 global points, drawing, cell_count, resized_image
 if event == cv2.EVENT_LBUTTONDOWN:
 drawing = True
 points = [(x, y)]
 elif event == cv2.EVENT_MOUSEMOVE:
 if drawing:
 points.append((x, y))
 # Fill the region on the resized image
 cv2.fillPoly(resized_image, [np.array(points)],

color=(0, 255, 0))
 cv2.imshow('Image', resized_image)
 elif event == cv2.EVENT_LBUTTONUP:
 drawing = False
 points.append((x, y))
 # Check if contour needs to be closed
 if len(points) > 2 and np.linalg.norm(np.array(points[0]) -

np.array(points[-1])) < 100:
 # Close the contour by connecting last point to the

first point
 points.append(points[0])
 # Increment the cell count
 cell_count += 1
 # Fill the region on the resized image
 cv2.fillPoly(resized_image, [np.array(points)], color=(0,

255, 0))

Get the path to the image from the user
image_path = input("Enter the path to the image: ")

Strip quotes from the file path if they are present
image_path = image_path.strip('"')

Load the image
image = cv2.imread(image_path)

P a g e | 28

if image is None:
 print("Error: Could not load image. Please check the file

path.")
 exit()

resized_image = cv2.resize(image, (800, 600)) # Resize for better

visualization

Set default values
points = []
drawing = False
cell_count = 0

Create a window and set the mouse callback function
cv2.imshow('Image', resized_image)
cv2.setMouseCallback('Image', draw_region)

Wait for the user to press 'c' to calculate confluency and quit
while True:
 cv2.imshow('Image', resized_image)
 key = cv2.waitKey(1) & 0xFF
 if key == ord('c'):
 break

Calculate the total image area based on the original size of the

loaded image
total_image_area = image.shape[0] * image.shape[1]

Calculate the area of the drawn regions
region_area = 0
for contour in points:
 if len(contour) > 2: # Check if contour has at least 3 points
 contour_array = np.array(contour)
 if contour_array.ndim == 3 and contour_array.shape[1] >= 3

and contour_array.shape[2] == 2:
 region_area += cv2.contourArea(contour_array)

Calculate and print the confluency
confluency = calculate_confluency(region_area, total_image_area)
print("Confluency: {:.2f}%".format(confluency))

Print the number of regions drawn (cell count)
print("Number of regions drawn (cell count):", cell_count)

Close all windows
cv2.destroyAllWindows()

Code A6. Determination of Confluency

from PIL import Image

P a g e | 29

def calculate_green_percentage(image_path):
 # Open the image
 image = Image.open(image_path)

 # Convert the image to RGB mode
 image_rgb = image.convert('RGB')

 # Initialize counters
 total_pixels = 0
 green_pixels = 0

 # Iterate over each pixel in the image
 for pixel in image_rgb.getdata():
 total_pixels += 1
 # Check if the pixel is green (0, 255, 0)
 if pixel == (0, 255, 0):
 green_pixels += 1

 # Calculate the percentage of green pixels
 green_percentage = (green_pixels / total_pixels) * 100

 return green_percentage

if __name__ == "__main__":
 # Get the path to the PNG image from the user
 image_path = input("Enter the path to the PNG image: ")

 # Strip quotes from the file path if they are present
 image_path = image_path.strip('"')

 # Calculate the percentage of green color
 percentage_green = calculate_green_percentage(image_path)

 # Print the percentage of green color
 print("Percentage of green color:

{:.2f}%".format(percentage_green))

	Development of a Machine Learning-Based Program to Measure Cell Proliferation
	eCommons Citation

	TH_Jones_Cover
	Honors Thesis

	TH_Jones_title
	TH_Jones_toc
	jones

