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Abstract 
Many tools have emerged to investigate the functioning of biological systems, especially when in contact 
with foreign substances. In vitro procedures are often used due to their cost effectiveness and suitability for 
high-throughput experiments. These procedures collect basic measurements, such as toxicity and 
biocompatibility, that provide insight into the compatibility and safety of a substance. In vitro toxicity tests 
are favored for their expediency, affordability, and consistent outcomes. Quantitative methodologies, like 
colorimetric and fluorometric assays, offer objectivity and high-throughput analysis. However, they require 
lengthy incubation times and only provide a single metric. Microscopy-based methods provide more 
information in terms of cell morphology and localization and can be captured quickly without the need for 
reagents and incubation. Yet, this method requires specialized expertise and is prone to subjective biases 
and variations based on the region of interest. Given the limitations of microscopy-based approaches, there 
is a growing interest in leveraging machine learning (ML) to streamline and enhance cell analysis. This 
study aims to develop an ML-based approach to evaluate cell count and confluency from microscope 
images and compare its performance to the colorimetric assay, CCK8. The CCK8 assay, which releases a 
dye when metabolized by live cells, served as the benchmark for comparison. The ML-based method 
developed using Ilastik, CellProfiler, and Python, segments microscopy images into cell and background 
regions, followed by erosion for cell boundary enhancement. CellProfiler subsequently quantifies the cell 
count and confluency from the processed images. This novel ML-based approach offers expedited analysis, 
while mitigating the inherent subjectivity and error associated with conventional techniques. This approach 
also eliminates the need for excess reagents and waste associated with quantitative assays. In conclusion, 
this technique presents an alternative in scenarios where traditional assays are impractical, such as with low 
cell counts or when cells must be reused. 
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Introduction 

Many tools have emerged to investigate the functioning of biological systems, 

especially when in contact with foreign substances. These tools include several methods, 

including dye exclusion, colorimetric, and fluorometric assays [1], as well as microscopy 

techniques, such as cell counting with a hemocytometer [2,3,4] and examination of cell 

morphology [5,6]. One specific area in which these tools are utilized is the study of 

biomaterials, which are materials interfaced with biological systems for a range of 

medical purposes [7]. Since these materials must not cause harm to the patient, rigorous 

testing must be performed to ensure potential safety before they are even approved for 

human clinical trials [7]. Although animal studies can accurately predict the efficacy and 

safety of a new biomaterial, these tests require a significant cost and a high level of care 

for the animals [8]. Therefore, in vitro tests are often used as a preliminary investigation 

of a novel biomaterial [9]. 

Due to various factors, in vitro tests are suitable for initial cell-based experiments. 

These tests are superior due to their capacity for high-throughput experiments [10,11], 

which allows for various conditions to be tested at once. In addition, in vitro experiments 

are rapid and cost-effective [5,8], allowing a successful biomaterial or treatment to reach 

animal trials quickly without a significant financial contribution. These tests can also 

measure various outcomes, such as cell function, enzyme activity, and receptor binding 

[12]. After one of these outcomes is determined, in vitro assays can determine the 

mechanism of action for a specific cellular phenotype [10,13]. Therefore, this method is a 

powerful tool to study the initial response of an organism to a particular substance or 

event. 

One specific area where in vitro tests are often used is in the study of cell toxicity. 

Toxicity is defined as a disruption in the biochemical function of a cell, where the effect 

can range in severity from barely detectable to fatal [5]. Toxicity tests are used in the first 

stage of biomedical device testing to assess the biocompatibility and safety of the 

materials used [7]. There are two main types of cytotoxicity tests. An assay provides a 

single absorption, fluorescence, or luminescence metric that can be measured in bulk 

using a plate reader, whereas a stain discriminates between live and dead cells 

individually and requires counting. One example of an assay is the MTT assay, which 
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detects the metabolic activity of cells by the conversion of substrates, affecting a change 

in the light absorption of the cell media [9]. The PicoGreen and AlamarBlue assays can 

also determine cytotoxicity through a plate reader by measuring green and blue 

fluorescence when these reagents bind to specific parts of the cell [2]. As a result, these 

assays are used to differentiate dead from live cells, allowing for the evaluation of a 

biomaterial’s biocompatibility. Other reagents can be used to stain cells and determine 

live and dead counts via count. For example, trypan blue and propidium iodide are only 

absorbed in dead cells but require cell counting due to not emitting a readable signal [2]. 

The large number of effective toxicity measurement methods shows that toxicity can be 

effectively deduced using in vitro methods. 

Although in vitro toxicity tests are effective, they have numerous limitations. 

These tests require a specific incubation time, temperature, and medium to be effective 

and eliminate confounding variables [14]. For cell stains that require cell counting, a 

standard method is through the use of a hemocytometer. This device has a number of 

glass chambers with specific area and depth [3]. The cell count in one of these chambers, 

which is completed manually, is extrapolated to determine the overall cell count. Due to 

the amount of manual labor involved, this method is time-consuming, prone to human 

error, and requires a narrow cell concentration to be effective [3,4]. Automated methods, 

such as the Vi-CELL® XR from Beckman Coulter, eliminate the human aspect of cell 

counting, but still require specific reagents and have a higher cost [4]. Consequently, 

microscopy-based approaches have been explored to provide more detailed information 

about the cells without the need for incubation. 

Microscope technology has rapidly developed in its ability to discriminate 

between small objects, which means it is applicable in the study of cells. The axial 

resolution for a confocal microscope is a few hundred nanometers, which allows for 

individual cells to be easily distinguished [15]. As a result, cell viability can also be 

determined using microscopy as altered morphology is another indication of toxicity [5]. 

Viability can also be measured by examining the colony formation ability or lysosomal 

integrity of a group of cells [15]. To obtain more detailed images to examine these factors 

or for morphology analysis, specific microscopy techniques, such as stimulated emission 

depletion microscopy (STED), are often used [15]. Scanning electron microscope (SEM) 
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images also give more information about the surface morphology of a cell [6]. Due to the 

high amount of light needed to perform in-depth microscopy techniques [15] and the 

gold-plating of samples needed to create SEM images [6], neither method is a viable 

option for intermediate testing as the cells may not survive the assessment. In addition, 

identifying specific morphological features of live and dead cells requires a great deal of 

expertise. Given these limitations, there is a growing interest in leveraging machine-

learning (ML) to streamline and enhance the analysis of microscope images of cells. 

ML-based methods seek to improve image analysis with automation, reducing 

user time and effort, increasing throughput, and reducing user bias and error, improving 

statistical power [16]. Common applications of ML include car navigation, movie 

recommendation, and face identification [17]. This wide array of complex tasks shows 

that ML will easily handle the task of cell counting. Several groups have already utilized 

ML to count and classify cells based on type. For example, one group used ML to 

develop a “you only look once” method that could accurately identify and count different 

types of blood cells [18]. Another group utilized ML to develop a program called HALO, 

which counted and sorted specific cells within a tissue [19]. These tools involve 

supervised learning methods, which can label objects after training [17]. Many open-

source software packages, such as Ilastik, use this type of ML to segment cell microscope 

images.  

Ilastik is a program that generates probability maps of cell images. The Broad 

Institute has combined this program with CellProfiler to count Chinese Hamster Ovary 

cells and determine confluence [20]. This study aims to build upon this approach to 

evaluate cell count and confluency from TIME GFP cell images. The results from this 

method will be compared with CCK8, which is a reputable colorimetric toxicity assay 

[21]. This comparison will determine the ML-based method’s efficacy and facilitate the 

development of a novel cell counter. 

 

 

 

 

 



P a g e  | 4 

 

Methods & Results 

 

 

 

 Fig. 1 describes the steps in the processing of a microscope image using the ML-

based program. This follows the methods of Karhohs [20] while also adding pre-

processing of the microscope image and processing of the Ilastik image steps. The steps 

in the gray-shaded boxes correspond to parts of the development process as shown in Fig. 

2.  
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Fig. 2 depicts the overall methods for the development of an ML-based program 

to measure cell confluency. Since the goal of this project was to develop a working 

program, the Methods & Results section delineates each step of the process with its 

outcome. 

 

Cell Culture 

 Time GFP cells were thawed and seeded in a T25 flask. The cells were cultured at 

37 degrees Celsius in Time GFP media. The media was changed every other day and 

cells were passaged every week, reseeding at a density of 50000 cells in a T25 flask with 

5 mL of media. The cells were monitored for three weeks. 

 

Cell Images 

 Cells images were taken every time the media was changed, which led to images 

of various cell densities. Four methods were used to capture cells each day they were fed, 

yielding seven viable images for each type of image. All images were taken at 10x 
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magnification. The types of images were Brightfield (BF) Dark, BF Light, Phase Dark, 

Phase Light, and GFP. The dark images were focused so the cells showed up darker than 

the background, whereas the light images were focused so the cells showed up lighter 

than the background. The GFP images were not used because not all parts of the cell 

fluoresced, which would yield inaccurate confluency results. The phase images were not 

used because many images had halos, as shown in Fig. 3, which Ilastik would improperly 

identify as cells. 

 

 

 

Initial Image Processing 

 The methods described by Karhohs [20] were recreated. This involved first 

creating a probability map in Ilastik as shown in Fig. 4. This map was generated by 

training the software through specifying which areas contained cells and which were 

background. Next, a ‘pipeline’ was developed in CellProfiler to determine the cell count 

and confluency. This pipeline involved ‘RescaleIntensity’, ‘ColorToGray’, and 

‘IdentifyPrimaryObjects’ modules. The RescaleIntensity module enhances certain areas 

to allow for easier cell segmentation. The ColorToGray module was necessary to convert 

the image to grayscale so it could be processed through the IdentifyPrimaryObjects 

module. That module calculated cell count and confluency by implementing a cell 

diameter range. Since dead cells will appear smaller in the microscope, this range ensures 

that only live cells will be counted. The resulting output of the IdentifyPrimaryObjects 

module is shown in Fig. 5. 
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Recreating Karhohs's previous methods yielded the CellProfiler output shown in 

Fig. 5. The calculated cell count of 473 had a 414.13% error from the manual 

calculations, and the calculated cell confluency of 45.0% had an 847.37% error from the 

manual calculations. This showed that other imaging processing methods were needed to 

make this method effective. 

 

Image Processing 

 Numerous image-processing techniques were employed to improve the efficacy 

of this ML-based method. The code for all of these operations is shown in Appendix I. 

The first image in the BF Dark folder was used for all preliminary image processing. 
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Fourier Transform of Microscope Image 

 The microscope image was passed through a Fourier transform before entering 

into Ilastik (Code A1). The resulting Fourier-transformed image is shown in Fig. 6. 

Although the human eye could more easily distinguish the cells, this transformation 

processed an inaccurate Ilastik probability map. This resulted in an improper 

identification of the cells, as shown in Fig. 7. The calculated cell count of 14 had a 

84.78% error from the manual calculations, and the calculated cell confluency of 98.6% 

had a 1975.79% error from the manual calculations. 

 

 

 

 

 

Erosion of Microscope Image 

 A variety of erosion and dilations conditions were performed on the microscope 

image. This included eroding and dilating the image at kernels of 3, 5, 7, 9, and 11 (Code 
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A2). The operations that were performed on the microscope image are shown in Fig. 8. 

Kernel 7 erosion produced the image with the most distinctive cells with the least 

distortion, so this condition was used for future image processing. The kernel 7 eroded 

image was processed using Ilastik to predict cell count and confluency as shown in Fig. 

9. The calculated cell count of 87 had a 5.43% error, which was much closer than any 

other pre-processing methods. On the other hand, the confluency of 21.4 had a percent 

error of 350.53% due to the blocky nature of the predicted cells. Therefore, this method 

was not effective either for identifying cell count. 
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Erosion of Ilastik Probability Map 

 Since processing of the raw microscope image was yielding inaccurate 

CellProfiler outputs, processing of the Ilastik probability map was explored as an 

alternative method. Erosions and dilations were performed with a kernel value of 7 after 

the image was processed through Ilastik (Code A3). The CellProfiler outputs from this 

method were analyzed for clear borders between cells. Example outputs using erosions of 

1, and 2 are shown in Fig. 10. These methods produced much more accurate CellProfiler 

outputs, so more cell images were processed using this method. 
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Computational Validation 

 Seven viable BF Dark and BF Light images were all analyzed using Ilastik, 

followed by a variety of erosions (Code A4), and then analyzed in CellProfiler to 

determine cell count and confluency. Each image was processed through 1, 2, and 3 

erosions (E1, E2, E3) at kernel 7 and every condition was processed separately in 

CellProfiler. The conditions were processed in CellProfiler first using a cell pixel 

diameter range shown in Table 1 and second using a cell pixel diameter range shown in 

Table 2. The diameters in Table 1 were proposed to capture all of the viable cells in 

image 1, which had a relatively small number of cells. The diameters in Table 2 were 

proposed to capture all of the viable cells in image 3, which had a relatively large number 

of cells. 

 

Table 1. Initial Pixel Diameter Range 
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Table 2. Refined Pixel Diameter Range 

 

 

The cell count and confluency were validated using codes shown in Appendix I. 

The first code utilized the cv2 module (Code A5), which was used to color over the cells 

using the computer mouse. Fig. 11 shows an example output from this method. This code 

also counted the number of objects created, which corresponded to the cell count. This 

image was saved, and another code (Code A6) was used to determine the cell confluence 

in the image. 

 

 

 

Tables 3 and 4 illustrate the percentage error elicited from the initial and refined 

image processing techniques for cell count. The Dark/Light label refers to the type of 

Brightfield image that was taken. The images processed using the initial pixel diameter in 

Table 1 do not have a label before Dark/Light, whereas the images processed using the 

refined pixel diameter in Table 2 are labeled as ‘ref’ before the Dark/Light label. The 

number after ‘E’ specifies the number of erosions performed of the Ilastik output. 

Although there were many conditions with a large percent error, the refDark E1, refDark 
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E2, and refDark E3 conditions produced the lowest error with values of 12.13 ± 5.81%, 

12.63 ± 14.75, and 11.49 ± 10.47, respectively. The refDark E1 and E2 also produced the 

best fit slope values closest to 1 with values of 1.006 and 1.1021. 

 

Tables 3 and 4. Initial and Refined Error of Cell Counting 

 

 

 Tables 5 and 6 illustrate the percent error elicited from the initial and refined 

image processing techniques for confluency. Every image processing technique was 

much less effective for calculating confluency than cell count. This was shown with the 

lowest percentage errors of 22.50 ± 20.68% for the Dark E3 condition and 22.74 ± 

20.24% for the refDark E3 condition. This was also shown through the best fit slopes as 

the slope closest to 1 was 0.818 from the refLight E1 condition. 

 

 

 

 

 



P a g e  | 14 

 

 

Tables 5 and 6. Initial and Refined Error of Confluency Calculations 

 

 

CCK8 Validation 

 The cell count measuring capabilities of the program were also validated using a 

CCK-8 assay. Two calibration curves at high and low concentrations were generated to 

validate the replicability of the CCK8 assay in a 24-well plate. The low concentration 

curve included points of 1000, 2000, 3000, 4000, 5000, and 6000 cells per well. The high 

concentration curve included points of 10000, 20000, 25000, 50000, 75000, and 100000 

cells per well. The low calibration curve yielded a slope of -5E-6. The negative slope 

showed that this assay was inaccurate. The high calibration curve yielded an equation of  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 =  
𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 + 0.0319

6 × 10−6
 

The slope from this equation was very similar to previous calibration curves, so it was 

used to calculate cell count in the experimental samples. 

For the experimental samples, cells were seeded in each well of a 24-well plate 

with 3000 cells in each well of the first column, 5000 cells in the second column, 10000 

cells in the third column, 20000 cells in the fourth column, 40000 cells in the fifth 
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column, and 60000 cells in the sixth column. The 20000-cell count was selected for being 

the seeding number in an experiment performed by Cai et al. [22] and the 40000 and 

60000 were selected for being double and triple this amount. The 3000, 5000, and 10000 

cell counts were selected for their adherence to a previous CCK8 absorbance calibration 

curve. The cells were incubated for three hours, and the absorbance values were 

collected. The predicted cell counts from the CCK8 assays were calculated from these 

absorbance values and the calibration curve. The predicted cell counts using the ML-

based program were calculated using the procedure from the Computational Validation 

section for only BF Dark images at 1, 2, and 3 erosions. The refined pixel diameter 

ranges in Table 2 were used for processing in CellProfiler. 

 Table 7 depicts the error of the CCK8 assay on determining cell count. The error 

was high at lower cell counts, such as 3000 and 5000 cells per well, whereas it decreased 

as the cell concentration increased. Table 8 describes the error of the ML-based program 

in determining the cell count of the same wells tested using the CCK8 assay. The results 

for this method were the opposite, as the ML-based program had relatively low errors of 

up to 10000 or 20000 cells per well but had greater errors in the 40000 and 60000 cell 

wells. 

 

Table 7. Error of CCK8 Assay 
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Table 8. Error of ML-Based Program on a 24-well Plate 

 

 

Data Analysis 

The percentage error for the cell count and confluency for computational 

validation were both calculated in Google Sheets. R2 values and linear fit slopes were 

calculated using Microsoft Excel.  The same analysis was performed for the CCK8 

validation experiment. 

 

Discussion 

 Computational validation of the ML-based program proved that three imaging 

methods were the most effective: refDark E1, refDark E2, and refDark E3. The refDark 

E1 condition had a comparable average error to the other two conditions but had the 

lowest standard deviation by far. Therefore, this condition had the most consistent error, 

which could be potentially predicted and eliminated by determining the relationship 

between error and cell amount. Although this seems promising, this condition had a best 

fit slope of 0.7736, which is much lower and farther from 1 than the refDark E2 and 

refDark E3 slopes of 1.006 and 1.0121, respectively. This was due to the processing of 

image 2, which had the highest actual cell count. When processing this image, the 

refDark E1 cell count was 18.92% too low, the refDark E2 cell count was 0.27% too 

high, and the refDark E3 cell count was 5.41% too high. In addition, the refDark E2 

method only produced an ineffective CellProfiler output in one image, whereas the 

refDark E3 method produced two ineffective CellProfiler outputs. Due to an accurate best 
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fit slope and low error at higher cell counts, the refDark E2 method was the most 

effective method.  

 The results of this experiment are consistent with previous literature. Erosion has 

been previously used in cell segmentation to separate overlapping cells [23]. Therefore, 

the cell count should become more accurate until whole cells are eroded. This was seen in 

the E3 condition, where more ineffective CellProfiler maps were produced due to over-

erosion of the Ilastik probability map.  

 The CCK8 assay was ineffective at lower cell concentrations, but its accuracy 

increased as cell count increased. Using the ML-based program on the same cells 

produced the opposite results as the lower cell counts had lower error, whereas the higher 

cell counts had higher error. Although the CCK8 assay is more sensitive than other 

metabolic assays such as MTT [24], the ML-based program must have a higher 

sensitivity at lower cell concentrations. The lower accuracy of the ML-based method at 

higher cell counts contradicted the results of the computational validation experiment. 

This result could be explained by the use of a 24-well plate, which has a recommended 

seeding density of 50000 cells per well [25]. When the cell concentration per plate 

approaches this, the cell plate will be at confluency. Any excess cells that divide will be 

suspended in solution. The ML-based method works by taking an image of only the cells 

attached to the bottom. As a result, any excess cells will not be captured and factored into 

the cell count calculations. This affirms that the ML-based method will have a saturation 

point, especially when using low surface area containers.  

  

Conclusions 

 The results of this experiment proved that the CCK8 assay and ML-based 

program occupy different niches in the calculation of cell count. The ML-based program 

has a higher sensitivity and can more accurately predict lower cell concentrations, 

whereas the CCK8 assay does not have a saturation point and can more accurately predict 

higher cell concentrations. Therefore, these two methods can be used in tandem for 

experiments that require a large range of cell concentrations in multi-well plates whose 

absorbances can be read in a plate reader. For larger surface areas and unorthodox 

containers, the ML-based program, specifically the refDark E2 method, offers an 
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accurate, rapid, and low-cost approach to determine cell count. This experiment validated 

the efficacy of an ML-based program that determines cell confluency and demonstrated 

that the program rivals and even in some instances exceeds the CCK8 assay in its 

accuracy. 
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Appendix I 

Code A1. Fourier Transform 

import numpy as np 
import matplotlib.pyplot as plt 
from scipy.fft import fft2, ifft2, fftshift, ifftshift 
import tifffile 
import os 

 
def low_pass_filter(image, cutoff_frequency): 
    # Compute 2D Fourier Transform 
    image_fft = fft2(image) 
    
    # Shift zero frequency component to the center 
    image_fft_shifted = fftshift(image_fft) 
    
    # Get image dimensions 

https://doi.org/10.1039/C5RA08958A
https://doi.org/10.1021/acsomega.9b01142
https://doi.org/10.1021/acsomega.9b01142
https://doi.org/10.1109/TII.2016.2542043
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    rows, cols = image.shape 
    
    # Create a mask for low-pass filtering 
    mask = np.ones((rows, cols)) 
    center = (rows//2, cols//2) 
    x, y = np.ogrid[:rows, :cols] 
    mask[(x - center[0])**2 + (y - center[1])**2 > 

cutoff_frequency**2] = 0 
    
    # Apply the mask to the shifted Fourier Transform 
    image_fft_shifted_filtered = image_fft_shifted * mask 
    
    # Shift back to the original position 
    image_fft_filtered = ifftshift(image_fft_shifted_filtered) 
    
    # Inverse Fourier Transform to get the filtered image 
    filtered_image = np.abs(ifft2(image_fft_filtered)) 
    
    return filtered_image 

 
# Get file path from the user 
file_path = input("Enter the file path of the TIFF image: ") 

 
# Load the image using tifffile 
image = tifffile.imread(file_path) 

 
# Set cutoff frequency (adjust as needed) 
cutoff_frequency = 30 

 
# Apply low-pass filter 
filtered_image = low_pass_filter(image, cutoff_frequency) 

 
# Specify the output directory 
output_directory = r"C:\Users\jones\Documents\Pirlo 

Lab\Thesis\2023.8.30 BF Dark Cells" 

 
# Specify the output file name 
output_file_name = "filtered_image.tif" 

 
# Create the full output file path 
output_file_path = os.path.abspath(os.path.join(output_directory, 

output_file_name)) 

 
# Display original and filtered images 
plt.figure(figsize=(10, 5)) 
plt.subplot(1, 2, 1) 
plt.imshow(image, cmap='gray') 
plt.title('Original Image') 

 
plt.subplot(1, 2, 2) 
plt.imshow(filtered_image, cmap='gray') 
plt.title('Filtered Image (Low-pass)') 
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# Save the filtered image 
tifffile.imwrite(output_file_path, filtered_image) 

 
# Show the plot 
plt.show() 

 
print(f"Filtered image saved to {output_file_path}") 

 

 

Code A2. Erosion and Dilation of Microscope Image 

import cv2 
import numpy as np 
import matplotlib.pyplot as plt 

 
def apply_erosion_dilation(image_path): 
    # Read the image 
    image_color = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) 

 
    # Convert the color image to grayscale 
    image_gray = cv2.cvtColor(image_color, cv2.COLOR_BGR2GRAY) 

 
    # Apply Erosion and Dilation 
    # kernel size is altered to test how each kernel size looks. 
    kernel_size = 7 
    kernel = np.ones((kernel_size, kernel_size), np.uint8) 
    image_eroded = cv2.erode(image_gray, kernel, iterations=1) 
    image_dilated = cv2.dilate(image_eroded, kernel, iterations=1) 

 
    # Display only the eroded and dilated images 
    plt.figure(figsize=(10, 4)) 

 
    plt.subplot(1, 2, 1) 
    plt.imshow(image_eroded, cmap='gray') 
    plt.title('Eroded Image') 
    plt.axis('off') 

 
    plt.subplot(1, 2, 2) 
    plt.imshow(image_dilated, cmap='gray') 
    plt.title('Dilated Image') 
    plt.axis('off') 

 
    plt.show() 

 
# Get the image file path as input 
image_path = input("Enter the path of the image: ").strip('"') 

 
# Apply erosion and dilation and display the images 
apply_erosion_dilation(image_path) 
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Code A3. Erosion and Dilation of Ilastik Image 

import cv2 
import numpy as np 
import matplotlib.pyplot as plt 
import tifffile 

 
def main(): 
    # Input the image path 
    image_path = input("Enter the path to the image: ").strip('"') 

 
    # Load the image 
    try: 
        image = tifffile.imread(image_path) 
    except ImportError: 
        print("Error: The 'imagecodecs' package is required to read 

TIFF files with LZW compression.") 
        print("Please install the package using: pip install 

imagecodecs") 
        return 
    except Exception as e: 
        print("Error: Could not read the image. Please check the 

file path.") 
        print("Exception:", e) 
        return 

 
    if image is None: 
        print("Error: Could not read the image. Please check the 

file path.") 
        return 

 
    print("Image shape:", image.shape)  # Print the shape of the 

loaded image 

 
    # Separate channels 
    channel1 = image[:,:,0] 
    channel2 = image[:,:,1] 

 
    # Define the kernel size for erosion and dilation 
    kernel_size = 7 
    kernel = np.ones((kernel_size, kernel_size), np.uint8) 

 
    # Apply erosion and dilation to each channel separately 
    erosion1 = cv2.erode(channel1, kernel, iterations=2) 
    dilation1 = cv2.dilate(channel1, kernel, iterations=2) 
    erosion2 = cv2.erode(channel2, kernel, iterations=2) 
    dilation2 = cv2.dilate(channel2, kernel, iterations=2) 

 
    # Display the images 
    plt.figure(figsize=(12, 6)) 
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    # Channel 1 
    plt.subplot(2, 3, 1) 
    plt.imshow(channel1, cmap='gray') 
    plt.title('Channel 1 (Original)') 
    plt.axis('off') 

 
    plt.subplot(2, 3, 2) 
    plt.imshow(erosion1, cmap='gray') 
    plt.title('Erosion 1') 
    plt.axis('off') 

 
    plt.subplot(2, 3, 3) 
    plt.imshow(dilation1, cmap='gray') 
    plt.title('Dilation 1') 
    plt.axis('off') 

 
    # Channel 2 
    plt.subplot(2, 3, 4) 
    plt.imshow(channel2, cmap='gray') 
    plt.title('Channel 2 (Original)') 
    plt.axis('off') 

 
    plt.subplot(2, 3, 5) 
    plt.imshow(erosion2, cmap='gray') 
    plt.title('Erosion 2') 
    plt.axis('off') 

 
    plt.subplot(2, 3, 6) 
    plt.imshow(dilation2, cmap='gray') 
    plt.title('Dilation 2') 
    plt.axis('off') 

 
    plt.tight_layout() 
    plt.show() 

 
if __name__ == "__main__": 
    main() 

 

 

Code A4. Variable Erosions Used in Final Analysis 

import cv2 
import numpy as np 
import matplotlib.pyplot as plt 
import tifffile 
import os 

 
def main(): 
    # Input the image path 
    image_path = input("Enter the path to the image: ").strip('"') 
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    # Load the image 
    try: 
        image = tifffile.imread(image_path) 
    except ImportError: 
        print("Error: The 'imagecodecs' package is required to read 

TIFF files with LZW compression.") 
        print("Please install the package using: pip install 

imagecodecs") 
        return 
    except Exception as e: 
        print("Error: Could not read the image. Please check the 

file path.") 
        print("Exception:", e) 
        return 

 
    if image is None: 
        print("Error: Could not read the image. Please check the 

file path.") 
        return 

 
    print("Image shape:", image.shape)  # Print the shape of the 

loaded image 

 
    # Separate channels 
    channel1 = image[:, :, 0] 

 
    # Define the kernel size for erosion and dilation 
    kernel_size = 7 
    kernel = np.ones((kernel_size, kernel_size), np.uint8) 

 
    # Prompt the user to enter the number of iterations for erosion 
    iterations = int(input("Enter the number of iterations for 

erosion: ")) 

 
    # Apply erosion to Channel 1 
    erosion1 = cv2.erode(channel1, kernel, iterations=iterations) 

 
    # Display the erosion1 image 
    plt.imshow(erosion1, cmap='gray') 
    plt.axis('off') 

 
    # Prompt the user to enter the path and filename to save the 

erosion1 image 
    save_path = input("Enter the path to save the erosion1 image: 

").strip('"') 
    filename = input("Enter the filename for the erosion1 image 

(include extension, e.g., .jpg): ").strip('"') 
    output_file = os.path.join(save_path, filename) 
    plt.savefig(output_file, bbox_inches='tight', pad_inches=0) 

 
    plt.show() 
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if __name__ == "__main__": 
    main() 

 

 

Code A5. Manual Determination of Cell Areas 

import cv2 
import numpy as np 

 
# Function to calculate confluency 
def calculate_confluency(region_area, total_image_area): 
    confluency = (region_area / total_image_area) * 100 
    return confluency 

 
# Function to handle mouse events 
def draw_region(event, x, y, flags, param): 
    global points, drawing, cell_count, resized_image 
    if event == cv2.EVENT_LBUTTONDOWN: 
        drawing = True 
        points = [(x, y)] 
    elif event == cv2.EVENT_MOUSEMOVE: 
        if drawing: 
            points.append((x, y)) 
            # Fill the region on the resized image 
            cv2.fillPoly(resized_image, [np.array(points)], 

color=(0, 255, 0)) 
            cv2.imshow('Image', resized_image) 
    elif event == cv2.EVENT_LBUTTONUP: 
        drawing = False 
        points.append((x, y)) 
        # Check if contour needs to be closed 
        if len(points) > 2 and np.linalg.norm(np.array(points[0]) - 

np.array(points[-1])) < 100: 
            # Close the contour by connecting last point to the 

first point 
            points.append(points[0]) 
        # Increment the cell count 
        cell_count += 1 
        # Fill the region on the resized image 
        cv2.fillPoly(resized_image, [np.array(points)], color=(0, 

255, 0)) 

 
# Get the path to the image from the user 
image_path = input("Enter the path to the image: ") 

 
# Strip quotes from the file path if they are present 
image_path = image_path.strip('"') 

 
# Load the image 
image = cv2.imread(image_path) 
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if image is None: 
    print("Error: Could not load image. Please check the file 

path.") 
    exit() 

 
resized_image = cv2.resize(image, (800, 600))  # Resize for better 

visualization 

 
# Set default values 
points = [] 
drawing = False 
cell_count = 0 

 
# Create a window and set the mouse callback function 
cv2.imshow('Image', resized_image) 
cv2.setMouseCallback('Image', draw_region) 

 
# Wait for the user to press 'c' to calculate confluency and quit 
while True: 
    cv2.imshow('Image', resized_image) 
    key = cv2.waitKey(1) & 0xFF 
    if key == ord('c'): 
        break 

 
# Calculate the total image area based on the original size of the 

loaded image 
total_image_area = image.shape[0] * image.shape[1] 

 
# Calculate the area of the drawn regions 
region_area = 0 
for contour in points: 
    if len(contour) > 2:  # Check if contour has at least 3 points 
        contour_array = np.array(contour) 
        if contour_array.ndim == 3 and contour_array.shape[1] >= 3 

and contour_array.shape[2] == 2: 
            region_area += cv2.contourArea(contour_array) 

 
# Calculate and print the confluency 
confluency = calculate_confluency(region_area, total_image_area) 
print("Confluency: {:.2f}%".format(confluency)) 

 
# Print the number of regions drawn (cell count) 
print("Number of regions drawn (cell count):", cell_count) 

 
# Close all windows 
cv2.destroyAllWindows() 

 

 

Code A6. Determination of Confluency 

from PIL import Image 
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def calculate_green_percentage(image_path): 
    # Open the image 
    image = Image.open(image_path) 

 
    # Convert the image to RGB mode 
    image_rgb = image.convert('RGB') 

 
    # Initialize counters 
    total_pixels = 0 
    green_pixels = 0 

 
    # Iterate over each pixel in the image 
    for pixel in image_rgb.getdata(): 
        total_pixels += 1 
        # Check if the pixel is green (0, 255, 0) 
        if pixel == (0, 255, 0): 
            green_pixels += 1 

 
    # Calculate the percentage of green pixels 
    green_percentage = (green_pixels / total_pixels) * 100 

 
    return green_percentage 

 
if __name__ == "__main__": 
    # Get the path to the PNG image from the user 
    image_path = input("Enter the path to the PNG image: ") 

 
    # Strip quotes from the file path if they are present 
    image_path = image_path.strip('"') 

 
    # Calculate the percentage of green color 
    percentage_green = calculate_green_percentage(image_path) 

 
    # Print the percentage of green color 
    print("Percentage of green color: 

{:.2f}%".format(percentage_green)) 
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