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Active Recall Networks for Multiperspectivity Learning through Shared
Latent Space Optimization

Theus H. Aspiras, Ruixu Liu and Vijayan K. Asari
Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, U.S.A.

Keywords: Generative Adversarial Networks, Convolutional Neural Networks, Variational Autoencoders, Unsupervised
Learning, Semi-Supervised Learning.

Abstract: Given that there are numerous amounts of unlabeled data available for usage in training neural networks, it
is desirable to implement a neural network architecture and training paradigm to maximize the ability of the
latent space representation. Through multiple perspectives of the latent space using adversarial learning and
autoencoding, data requirements can be reduced, which improves learning ability across domains. The entire
goal of the proposed work is not to train exhaustively, but to train with multiperspectivity. We propose a new
neural network architecture called Active Recall Network (ARN) for learning with less labels by optimizing
the latent space. This neural network architecture learns latent space features of unlabeled data by using
a fusion framework of an autoencoder and a generative adversarial network. Variations in the latent space
representations will be captured and modeled by generation, discrimination, and reconstruction strategies in
the network using both unlabeled and labeled data. Performance evaluations conducted on the proposed ARN
architectures with two popular datasets demonstrated promising results in terms of generative capabilities and
latent space effectiveness. Through the multiple perspectives that are embedded in ARN, we envision that this
architecture will be incredibly versatile in every application that requires learning with less labels.

1 INTRODUCTION

With limited labeled data, an unsupervised training
strategy must be developed to determine the latent
space representations of the data, which learns the
available features of the data without any labeled in-
formation. Data must be encoded into a latent space
and decoded for replicating the input, which creates
a nonlinear dimensionality reduction mapping from
input space to latent space. The ability of the net-
work to faithfully recreate the input from the latent
space representation means that the network has al-
ready learned all of the necessary features of the data
embedded in the latent space for any task, includ-
ing detection, classification, and recognition capabil-
ities. The features extracted in an unsupervised fash-
ion become extendable for supervised tasks, through
which the neural network training manipulates the la-
tent space for the supervised data. From only a small
amount of labeled data, the entire latent space repre-
sentation can be partitioned into respective classes.

Within the shared latent space lies the ability to
both discriminate and generate information. Using
multiple training criteria would bias the latent space
representations for reinforcing different associations

and features, which have been shown to be effective
in human psychology. It is therefore valuable to uti-
lize a multi-cost optimization of the latent space using
these various criteria. Previous approaches separate
cost functions and derive other architectures in order
to optimize a specific application, but new research
points to multi-cost and competing cost optimization,
which works incredibly well among different datasets
for detection, recognition, generation, and other tasks.
The incorporation of multiperspectivity allows the use
of different spaces of the network: image space, latent
space, and task space. Figure 1 shows an example of
this multiperspectivity architecture.

The contribution of this paper is to present a neu-
ral network architecture with a shared optimized la-
tent space. The active recall network’s (ARN) latent
space is trained with adversarial examples through the
generative capabilities of the network. By combining
the encoding of data to a lower dimensional space and
discriminating between real samples and adversarial
examples, the interpolation of data points within the
real distribution will be more indicative of relative im-
age features rather than just encoding.

For example, an interpolation between two real
data points for an unsupervised variational autoen-
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Figure 1: Architecture for multiperspectivity learning. La-
tent space representations become richer and more gener-
alizable through the unsupervised/supervised training and
discriminative/generative abilities of the network.

coder (VAE) is naturally a mean image between these
datapoints, which is due to modeling each data pro-
jected in the latent space as a Gaussian distribution
in the dataset and the loss function of the autoen-
coder. Unsupervised adversarial autoencoders (AAE)
for developing the latent space only regularizes the
entire distribution towards a configured distribution,
but does not address the interpolation between data-
points (AAE incorporates variational autoencoders as
well).

The ARN addresses this interpolation by training
the encoding portion adversarially. Through the gen-
eration of these interpolations within the latent space,
the network train both the encoder and the simple dis-
criminator (combined to mimic the discriminator net-
work of GAN architectures) to maximize the image-
level features being encoded into the latent space.
Therefore, the encoding of the images to the ARN
latent space takes into account the defining features
of the real distribution from the training of the en-
coder/discriminator. Our approach aims to optimize
the feature extraction of the network using multiple
loss functions.

2 RELATED WORK

For developing a suitable architecture for shared la-
tent space optimization, we must consider various hu-
man perspectives that facilitate learning capabilities.

Psychologically, the retention of memory is
through the creation of associations. Gobet (Gobet
and Simon, 1998) created an experiment to determine
the ability to memorize information from various skill
levels. When chess pieces were arranged from previ-
ously played games, expert chess players were able
to memorize most chess piece locations based on as-

sociations of games they have played, but novice and
intermediate chess players had much less ability for
memorization. In neural networks, it is the develop-
ment of the latent space that creates the ability for as-
sociation. Effective memorization is not just the abil-
ity to develop various associations, but also to retrieve
these associations. The generative ability of the brain
to retrieve images is impressive. Several studies (Bi-
han et al., 1993), (Ogawa et al., 1992) have consid-
ered the human ability to recall various images and
determined that the same cortex activations during
these cognitive processes are similar to activations in-
volved in visual perception. O’Craven and Kanwisher
(O’Craven and Kanwisher, 2000) demonstrated that
the occipito-temporal cortex activates during both vi-
sual face stimuli and imagining faces. This strength-
ens the consideration for generative models, which
are necessary for visualization of previous trained in-
formation.

2.1 Active Recall

Active recall (Karpicke and Roediger, 2008) is the
learning methodology which claims that memory
should be stimulated during the learning process.
This learning process is different from passive review,
in which memories are processed passively through
just input alone. Several studies have been conducted
that support the improvement of learning in humans
through active recall in contrast to passive learning.
Karpicke and Blunt (Karpicke and Blunt, 2011) eval-
uated the effectiveness of two studying methodolo-
gies, elaborative studying with concept mapping or
retrieval-heavy studying. It was found that students
that applied more retrieval techniques did 50% bet-
ter on tests than others who applied more concept
mapping techniques, even being tested on the cre-
ation of concept maps. Standard training protocols
for neural networks utilize passive review (concept-
mapping) for training weight structures. Through
continuous inputs and reiteration, neural networks are
optimized for the specific applications. Autoencoders
develop a latent space similar to the creation of con-
cept maps. Generative adversarial networks train in
a fashion similar to active recall (retrieval-heavy),
which necessitates the generation of the answer with
the psychological testing effects of the discriminator.
Therefore, it is vital to develop a unified neural net-
work architecture that embraces both passive review
and active recall. This inspired the creation of the pro-
posed network, active recall network (ARN), that en-
compasses encoder/decoder based review and gener-
ator/discriminator based recall.
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2.2 Current Neural Network
Methodologies

Autoencoders: Autoencoders(Rumelhart and Zipser,
1985) have two parameterized functions: an encoder
function which allows a transformation from the im-
age space to the latent space and a decoder func-
tion which transforms the latent space back to the
image space through training on the cross-entropy
reconstruction loss. Much research has been con-
ducted on improving autoencoder methodologies like
restricted Boltzmann machines for pre-training Deep
Belief Networks (Bengio et al., ) and variational au-
toencoders (Kingma and Welling, 2013), which have
been popular with the deep learning community. Vari-
ational autoencoders utilize the assumption that sam-
ples can be modeled as a Gaussian distribution, which
will aid the generative qualities of the autoencoder.
Variational autoencoders have several variants like
disentangled VAE (Li et al., 2017) which improve the
encoding scheme of the autoencoder through categor-
ical information.
Generative Adversarial Networks: Generative ad-
versarial networks (Goodfellow et al., 2014) aim to
model samples from a real distribution by utilizing a
generator to produce an approximate distribution. For
generative adversarial networks, there are two func-
tions that are utilized for training: a generator for cre-
ating data from a latent space with a noise sample onto
the image space, and a discriminator for transforming
the image space for discriminating real and fake sam-
ples from real and generated data respectively. This
training strategy uses a min-max optimization to up-
date both the generator and discriminator to deter-
mine differences between real and fake information.
Several GAN variants have been proposed such as
Bidirectional GAN (Donahue et al., 2016) for learn-
ing the inverse mapping of the latent space, InfoGAN
(Chen et al., 2016) to learn disentangled representa-
tions, CycleGAN (Zhu et al., 2017) for domain adap-
tation, and deep convolutional GAN (Radford et al.,
2015) for high fidelity mapping. VAE-GAN (Larsen
et al., 2015) utilizes a shared latent space between the
generator and the decoder of the VAE in a combined
network.
Adversarial Autoencoders: Adversarial autoen-
coders (Makhzani et al., 2015) are similar to GAN
architectures, which utilize a discriminator to train
the generator network. These networks adversarially
train the encoder of the network (which is the gener-
ator) to match a specific distribution as described by
the user using a trained discriminator function. Ad-
versarially regularized autoencoders (ARAE) (Zhao
et al., 2017), an extension of adversarial autoencoders

proposed by Zhao et al., minimize the reconstruction
loss with the minimization of the Wasserstein dis-
tance between the distribution from the encoder and
a prior distribution, which is trained with coordinated
descent across three cost functions. The adversarial
generator encoder (AGE) (Ulyanov et al., 2017) net-
work combines both adversarial and reconstruction
losses into a single unifying architecture. Since this
network is similar to our intended goal, we will utilize
this architecture as a basis for our proposed network.
Training Cost Functions: Several cost/loss func-
tions have been proposed for generative networks.
AEs utilize reconstruction loss to train the encod-
ing/decoding weights of the network. GANs are
based on classification of real/fake samples, thus re-
quire min/max loss function to train the network.
Vanilla GANs use Binary Cross Entropy, while other
GAN methodologies use Wasserstein distance for loss
with weight clipping or gradient penalty. Recent
trends in cost/loss functions are placed in relativistic
GANs (Jolicoeur-Martineau, 2018), which places em-
phasis on the difference between real and fake sam-
ples. Other cost functions, like triplet loss, utilize an
anchor to quantify distance between positive and neg-
ative samples.

2.2.1 Discussion

AE - Blurry Imagery: AE networks used for nonlin-
ear dimensionality reduction of imagery provide an
encoding to generate imagery, given the same input
image. Therefore, by providing the right values in
the low dimensional space, the proper reconstruction
can be displayed. Any deviation from the encoded
value using normal AE networks provide noisy out-
puts due to a lack of required interpolation between
images. Variational AEs try to alleviate this prob-
lem by modeling the projection of the data as a spe-
cific noise variable (usually Gaussian), thus providing
connections between datapoints to generate viable in-
terpolations and generations between datapoints. As
currently found with VAEs, these reconstructions of
the interpolations are blurred images due to the Gaus-
sian noise, but this interpolation is not based on the
entire sampled space. It should be noted that only
the interpolations between images are blurred, not the
end-to-end reconstruction of the real image.

GANs by nature are interpolations of the image
space. Through the constraining of the entire ran-
domly sampled space towards the real data, the in-
terpolations will generate closer towards the actual
distribution. To utilize this, we can provide a dis-
criminative/generative space within the AE to prop-
erly interpolate points of the randomly sampled la-
tent space and generate images closer to the real dis-
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Figure 2: The interpolation of the latent space using VAEs
(black line) and GANs (blue line).

tribution. Figure 2 shows the interpolation possible
through VAEs and GANs.

This blurriness is also due to the reconstruction
loss usually used for autoencoder networks. This
reconstruction loss is based on pixel-wise L1-loss,
which works well in converging pixel information to-
wards a given output, but does not work well in con-
sidering losses in features. Deep Feature Consistent
Variational Autoencoders (Hou et al., 2016) utilize
a feature-based reconstruction loss from a pretrained
deep neural network. The pixel-wise information in
the deep features of the network provide better re-
construction loss for the network, which translates to
feature reconstruction rather than purely pixel-wise
reconstruction. AGE network also include this re-
construction within the loss functions as encoder-
generator reciprocity. We will utilize the encoder-
generator reciprocity training paradigm for our pro-
posed network.
GAN - Mode Collapse: GAN networks are noto-
rious for mode collapse, where the generator of the
GAN that is unable to produce the full range of sam-
ples across the distribution, only focusing on a spe-
cific subset for generation. This is due to two vi-
tal prospects: The discriminator works too well dis-
criminating between some real and fake images and
the generator has a one-sided gradient. It has been
found that regular GAN cost functions collapse to
specific modes because the generator has insufficient
gradient to move towards the real distribution. Even
through initialization, partial mode collapse has al-
ready started due to the generator not being con-
strained to generate all of the distribution samples,
though partial mode collapse is ideal for quality gen-
eration. The generator is only constrained to have its
distribution within the discriminator distribution.

To alleviate mode collapse, the discriminator can
utilize Wasserstein distance to promote the learning
of the generator through restored gradients. The gen-
erator can utilize the AE reconstruction loss to con-
strain its generation to recreate all of the real distribu-
tion samples. Figure 3 demonstrates this concept of
alleviating mode collapse through AE reconstruction.
Given an initial generative distribution (3a), samples
that are generated by GAN will only be similar to

real samples it has contained within its distribution
(3b). Samples that are not generated by the gener-
ator will be pushed towards the real sample through
reconstruction loss.
Multiperspectivity Learning: The combination of
reconstruction loss and adversarial loss must be prop-
erly configured to converge correctly. Given three
datapoints on a shared latent space (real data, recon-
structed data, and generate/fake data), a harmonious
relationships should be established. Reconstruction
loss is usually configured as the minimization be-
tween the reconstructed loss and the real data. Ad-
versarial loss, on the other hand, can be configured
in many ways. Typical adversarial loss is defined as a
min/max loss of real and generated data classification.
As discussed earlier, a generator has the ability to gen-
erate reconstructed data, thus can be assumed that all
reconstructed data lies within the generator distribu-
tion. A generator may not be able to generate real
data. Therefore, if the discriminator is too powerful
in discriminating between real and generated data, the
reconstructed points will also be discriminated from
the real data, which may still provide a potential for
mode collapse. Triplet loss can be used for this pur-
pose through minimizing real and reconstructed data
distance and maximizing real and generated data dis-
tance, but this loss will not create the same kind of
convergence as vanilla GANs.

The best configuration for adversarial loss is to
make sure that all samples lie within both the dis-
criminator and generator distributions, which will fine
tune the distribution towards the samples. In this case,
all reconstructed points should lie within the genera-
tor/discriminator distributions. Therefore, if these re-
constructed points are known, it is best provide an ad-
versarial loss between the reconstructed data and the
generated data. All of the reconstructed samples will
minimize their distance between their real samples
and the generated samples will be trained adversari-
ally towards the reconstruction samples, as shown in
Figure 3c. With the discrimination of reconstruction
points (which are always within the generator’s distri-
bution), it then becomes not necessary to implement
different loss variants, like Wasserstein distance, due
to the gradient always being present. This methodol-
ogy sufficiently alleviates mode collapse that is inher-
ent in GANs.

3 ACTIVE RECALL NETWORK

We propose an active recall network (ARN), which
combines the cost functions of an autoencoder with a
GAN in a fused network architecture. Figure 4 shows
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(a) Initial (b) GAN (c) Proposed

Figure 3: Active Recall Network Architecture. Both AE
and GAN architectures share encoder, decoder, and latent
space weights for unsupervised training.

Figure 4: Active Recall Network Architecture. Both AE
and GAN architectures share encoder, decoder, and latent
space weights for unsupervised training.

the framework of the proposed neural network archi-
tecture.

It should be noted that the shared latent space
is not created by the combination of the encoder
and generator together, but rather projects onto the
latent space exclusively. The ARN uses the AE
loss function to minimize the reconstruction error
and the GAN loss function to minimize and maxi-
mize the Kullback-Leibler divergence of the genera-
tor and discriminator respectively. The ARN is fash-
ioned to share latent space representations and en-
coder/decoder architectures to optimize a latent space
for both regression and classification. The ARN
model is trained across three cost functions, Lae,
Ldis, and Lgen, representing autoencoder, discrimina-
tor, and generator respectively:

min
φ,ψ

Lae(φ,ψ) = Ex∼P∗ [−log pψ(x|encφ(x))] (1)

max
φ,w

Ldis(φ,w) = Ex∼P∗ [ fw(encφ(x̃))]

−Ez̃∼P◦ [ fw(z̃)]
(2)

min
ψ,θ

Lgen(ψ,θ) =−Ez̃∼P◦ [ fw(z̃)] (3)

Where encφ(x) is latent space sample z from a
real distribution P∗, pψ is the reconstruction prob-
ability, x̃ is the reconstructed sample from the real
image, gθ(s) is a generator which creates data onto

Table 1: Active Recall Network training paradigm.

Algorithm for ARN Training
for each training iteration do
(1) Train the enc./dec. for reconstruction (φ,ψ)

Sample {x(i)}m
i=1 ∼ P∗

Compute z(i) = encφ(x(i))
Backprop loss, 1

m ∑
m
i=1 log pψ(x(i)|z(i))

(2) Train the encoder/discriminator (φ,w)
Sample {s(i)}m

i=1 ∼ N(0,1)
Compute z̃(i) = encφ(decψ(gθ(s(i))))
Backprop loss, 1

m ∑
m
i=1 fw(encφ(x̃(i)))

− 1
m ∑

m
i=1 fw(z̃(i))

(3) Train the generator/decoder adversarially (ψ,θ)

Backprop loss, 1
m ∑

m
i=1 fw(z̃(i))

end for

a latent space from a noise sample s, decψ(z) is a
reconstruction of the image x from the latent space
sample z, fw(z) is a discriminator in the latent space,
and z̃ = encφ(decψ(gθ(s))) is a latent space sample
from the generated distribution P◦. Generally, it is
more optimal to generate and discriminate from fixed
distributions like a Gaussian distribution, which are
embedded within the training of the ARN. Adversar-
ially regularized autoencoders generate a parameter-
ized distribution, which is more complex for obtain-
ing a better solution. The ARN can utilize any type of
prior distribution, but will specifically aim to create a
parameterized solution from within the latent space.
Through the optimization of the network, the optimal
solution for the generator should become projecting
samples only from the discriminative region of the la-
tent space. Table 1 shows the training paradigm of the
unsupervised ARN network.

It is found that the GAN architecture utilizes a
min-max criteria to optimize the generator and dis-
criminator, but with the combination of cost functions
with the autoencoder, there is also another min-max
criteria inherent in the architecture that is not explic-
itly described. Linear discriminant analysis (LDA)
(McLachlan, 2004) aims to maximize interclass dif-
ferences, which in the case of GAN networks aims
to maximize real/fake class differences. A symptom
of this maximization is the minimization of intraclass
differences, which is more explicitly described in Fis-
cher’s linear discriminants (Fisher, 1936). As dis-
cussed earlier, an autoencoder aims to minimize the
reconstruction error of the network. A symptom of
this minimization is the maximization of intraclass
variations to reconstruct the information. Principal
component analysis (PCA) (F.R.S, 1901) is a maxi-
mization of variation to improve encoding ability of
the network, which is somewhat similar to autoen-
coders. These competing cost functions will allow the
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best representation learning for both regression and
classification. According to Martinez et al. (Martinez
and Kak, 2001), it has been found that discriminant
analysis works better for generalizing larger datasets
while PCA works better in smaller datasets. There-
fore, ARN utilizes the strengths of both types of data
associations.

3.1 ARN Variants

ARNs are easily extendable to variational and convo-
lutional variants. The reparameterization trick applied
to ARNs will have a better ability to generalize the
distribution through the modeling of the data points
in the latent space as a Gaussian distribution. By uti-
lizing this, the modeled distribution will be more con-
nected, which may aid in the generation of the data.
The convolutional variation will create a latent space
as a receptive field, which allows for generation as
a receptive field rather than as the entire image. For
more complex datasets, we will utilize the convolu-
tional variants in a combined architecture called deep
convolutional ARN (DCARN).

3.2 ARN Strengths

ARN encodes into a discriminative latent space as op-
posed to AE and VAE. AAE performs discrimination
by modeling a priori distribution. It performs encod-
ing into a latent space then discriminates the latent
space into a priori distribution. On the other hand,
ARN performs discrimination in the latent space by
modeling a learned distribution from adversarial ex-
amples. That is, it performs a discriminative encod-
ing to generate a distributed latent space. This process
of discriminative encoding will generate an accurate
distributed latent space when compared to the latent
space generated by AAE. The discriminative encod-
ing is performed by employing the reconstruction and
adversarial loss functions. In ARN, the distributed en-
coding will encode not only the actual data points but
also the virtual data points that may occur between
the actual data points through a distribution manifold.
This manifold of visual perception is created by a set
of virtual data formed by the image features extracted
during the distributed encoding process.

The main difference between the ARN and the AE
variants is the modeling strategy of the virtual data.
For AE variants, the virtual data points are modeled
from a Gaussian Mixture Model (GMM), which joins
the real data points through the overlapping of the
Gaussian functions within the latent space to create
the distributed manifold. The ARN is able to model
these virtual data points based on the extraction of im-

age features from adversarial examples by discrimi-
native encoding, thus creating a distribution manifold
which more accurately models image features.

With the strengths of the AE and GAN architec-
tures being combined in ARN into a single neural net-
work, it is envisaged to be used for several different
extensions, like domain adaptation (due to distribu-
tion learning) and automatic model configuration (due
to better trainability of the network), which will be
easier for implementation than other neural network
architectures.

3.3 Supervised Learning using ARNs

With classification through labeled information, the
discriminator will be extended to compute the prob-
abilities of all classes along with the determination
of real/fake data. In this case, the classifier has three
areas of information to train the network: (1) real im-
ages with labels, which can be trained like in any reg-
ular supervised classification problem, (2) real images
without labels, which can be trained as unsupervised,
and (3) images from the generator, which the discrim-
inator learns to classify as fake. In essence, the active
recall network trained in an unsupervised fashion is
able to discriminate and generate the real data distri-
bution. Therefore, it is only needed to train the class
discriminator for only the labeled data and to train the
generator with the given class. Given the shared latent
space, it is expected that discriminating only the la-
beled data provides sufficient information to discrim-
inate the entire unlabeled dataset, which provides val-
ues for labels of all information. The shared latent
space provides a way to remove overfitting the spe-
cific labeled information so that class discrimination
can be generalized to the entire distribution. The gen-
erator of the network can also be trained by constrain-
ing one of the random components of the distribution
for creating the class. This allows generation of the
data within the specific class distribution.

Therefore, the discriminator must calculate both
unsupervised loss and supervised loss based on the
data. Labeled information accounts for both loss
types while unlabeled only accounts for unsupervised
loss. Many neural network architectures utilize the
supervised methodology, which can be tested and
evaluated using many different datasets. For creating
a supervised ARN, another cost function is added to
reduce the classification error of the data and includes
the ability to generate samples of a specific class us-
ing a random sample. We define several supervised
variants for the ARN network. Equation 4 trains only
the class discriminator.
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max
t

Ldisc(t) = Ex∼P∗ [log(ht(encφ(xc)))] (4)

Where c is the class labels and ht is the class dis-
criminator. If the necessity of the network is to gener-
alize the class information over the entire distribution,
only the class discriminator should be used for updat-
ing. Equation 5 trains both the class discriminator and
the encoder portion of the network.

max
φ,t

Ldisc(φ, t) = Ex∼P∗ [log(ht(encφ(xc)))] (5)

If the purpose is to focus the class discriminator to
correctly classify the given labels, the class discrim-
inator and the encoder of the network should be up-
dated. Equations 6 and 7 trains the entire network to
adversarially train class information.

max
φ,t

Ldisc(φ, t) = Ex∼P∗ [log(ht(encφ(xc)))]

+Ez̃∼P◦ [log(1−ht(z̃))]
(6)

min
ψ,τ

Lgenc(ψ,τ) = Ez̃∼P◦ [log(1−ht(z̃))] (7)

Where τ is the class generator. If the network
should be constrained to only include given labels,
the class information can be used to generate and
discriminate classes to adversarially training the net-
work. Depending on the purpose of the class discrim-
inator, various training scenarios are possible.

4 RESULTS

We have trained the active recall network on two
different datasets, CIFAR-10 (Krizhevsky, 2009) and
MNIST (Lecun et al., 1998), for evaluating the gen-
erative and latent space encoding performance of the
proposed architecture.

4.1 Generative Characteristics Results

We have implemented different configurations of the
active recall networks to determine the generative
characteristics of the network for unsupervised learn-
ing. The first is the unsupervised ARN implemented
for learning the MNIST handwritten digit database.
The generative capability of the ARN in reproducing
the MNIST dataset is presented in Figure 5a. It is ev-
ident that the visual quality of the reproduced images
is comparable to the results produced by other gener-
ative architectures.

We have also implemented the DCARN for unsu-
pervised learning of the CIFAR-10 tiny color image
database. The generative capabilities of the DCARN
in reproducing the CIFAR-10 dataset is presented in
Figure 5b. The visual quality is observed to be better

(a) MNIST (b) CIFAR10-DCARN

Figure 5: MNIST and CIFAR-10 results using the ARN and
DCARN architecture respectively.

than AE architectures and comparable to GAN mod-
els.

Tables 2 and 3 shows the metrics for the DCARN
network against other generative neural networks.
The inception score presented in Table 2 for the
DCARN network is shown to perform slightly worse,
but considering recent research on inception score
for evaluating GAN architectures (Lucic et al., 2017;
Heusel et al., 2017), the Fréchet Inception Distance
(FID) score provides a better measure of generative
performance. The FID metrics of the DCARN pre-
sented in Table 3 show good performance compared
to generative adversarial architectures. The DCARN
performs better than the DCGAN, but not as well as
the WGAN (Arjovsky et al., 2017) architecture. The
ability of the network to create quality generations is
still limited, as discussed using VAE-GAN hybrid ar-
chitectures, but with the ARN architecture, flexibility
in learning rate between the adversarial loss and the
reconstruction loss can be tuned to provide better per-
formance in different areas. Furthermore, the gener-
ative capabilities of the ARN network are still very
good, but are more useful for the next evaluation: la-
tent space encoding.

We utilized the DCARN for unsupervised gener-
ation on CelebA Face dataset (Liu et al., 2015) and
horses from ImageNet (Deng et al., 2009), as shown
in Figure 6. The DCARN network has the ability to
provide good convergence of adversarial loss func-
tions using the reconstructed datapoints.

4.2 Latent Space Encoding
Characteristics Results

To determine the ability of the proposed architecture
to learn with less labels, only a small subset of labeled
information need to be given with the rest of the in-
formation given as unlabeled, thus requiring both su-
pervised and unsupervised training respectively. We
utilize the MNIST dataset due to the availability of
labeled data. To evaluate the generalization capabil-
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Table 2: Inception score of unsupervised DCARN for gen-
erating the CIFAR-10 dataset.

Algorithm Inception
ALI (Dumoulin et al., 2016) 5.34 ± .05
BEGAN (Berthelot et al., 2017) 5.62
DCGAN (Radford et al., 2015) 6.16 ± .07
WGAN (Arjovsky et al., 2017) 7.86 ± .07
DCARN 4.70 ± 0.02
Real Data (Makhzani et al., 2015) 11.24 ± 0.12

Table 3: Fréchet Inception Distance (FID) score of the un-
supervised DCARN for generating the CIFAR-10 dataset.
The DCARN architecture provides better image fidelity and
diversity as compared to other generative architectures.

Algorithm FID
LSGAN (Mao et al., 2016) 87.1 ± 47.5
WGAN (Arjovsky et al., 2017) 55.2 ± 2.3
BEGAN (Berthelot et al., 2017) 71.4 ± 1.6
VAE (Kingma and Welling, 2013) 155.7 ± 11.6
DCARN 67.4 ± 1.14

(a) CelebA (b) ImageNet Horses

Figure 6: Random generations from CelebA and Ima-
geNetHorses using the DCARN architecture.

ity of the ARN, we only used 100 labeled data and
the remaining unlabeled training dataset of MNIST
for training the ARN network. Table 4 shows the ac-
curacy of the ARN network against other encoding
neural networks, such as AAE and VAE, using class
discriminator and encoder update for different latent
space dimensions. It can be observed that the ARN
outperforms the AAE and VAE for latent space di-
mension of 20. For lower latent space dimensions,
the ARN utilizes the discriminator to distinguish the
real and fake samples and can only encode in the real
part of the latent space and hence the reduced perfor-
mance of the network. Table 5 shows the accuracy
of the ARN model using only class discriminator up-
dates for latent space dimension of 10. It can be ob-
served that the ARN architecture provides more than
5% improvement in latent space generalization for the
MNIST dataset.

4.2.1 Discussions

As discussed in many papers, the generative abili-
ties of the AE networks are not as effective as nor-
mal GAN-based architectures due to the AE recon-
struction loss. The decoupling of discriminator and
generator portions of the network allows focus on the
generative details of the dataset, as the discriminator
behaves as a strong classifier which strictly models
the data distribution. As shown with semantic seg-
mentation, fully convolutional networks and variants
like SegNet (Badrinarayanan et al., 2015) are unable
to truly create detailed boundary information from in-
ner projections in the encoder-decoder structure. With
the ARN architecture, the autoencoder reconstruction
loss limits the ability to recreate strong details, but can
create better data representations due to the encoding
of the latent space from reconstruction and adversarial
loss. The current implementation allows for weight-
ing the learning rate between the reconstruction loss
and the adversarial loss, which provides flexibility for
generation and latent space creation.

One thing to note about the generative capabilities
of the ARN is the shared latent space. The entire la-
tent space is usually given for generation, as used in
normal VAEs. As the ARN develops the shared latent
space, using the discriminator to determine real and
fake data, the generator should project within the real
data distribution on the latent space, thus affecting the
capacity of the network.

Current state-of-the-art AE architectures utilize
reconstruction loss to encode the information on the
latent space, which are based on pattern associations.
On the other hand, ARN trains using both reconstruc-
tion and adversarial losses, which encompasses pat-
tern association and data characteristics. The latent
space of ARN becomes better generalized due to the
exploration of the latent space through its generations.
Distribution modeling of adversarial training ARN is
considered much better than their AE counterparts,
though not entirely interpretable. By modeling a bet-
ter unsupervised latent space in ARN, the use of la-
beled information becomes easily extendable.

5 CONCLUSION

The active recall network presented in this paper
is a promising new neural network architecture that
is able to create an optimized shared latent space
through reconstruction loss and adversarial training.
The ARN architecture is observed to be effective in
providing good generative characteristics when com-
pared to various state-of-the-art generative networks
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Table 4: Supervised ARN results on MNIST using updates for both the encoder and class discriminator.

Algorithm LS 5 LS 10 LS 20
Adversarial Autoencoder (Makhzani et al., 2015) 42.9 61.8 57.5
Variational Autoencoder (Kingma and Welling, 2013) 61.9 66.2 69.1
ARN 59.0 68.4 73.5

Table 5: Supervised ARN results on MNIST using only class discriminator updates.

Algorithm LS 10
Adversarial Autoencoder (Makhzani et al., 2015) 57.2
Variational Autoencoder (Kingma and Welling, 2013) 68.0
ARN 73.5

and provides even better latent space generalization
amongst encoder-based methodologies. It is envis-
aged that the ARN can be effectively used in applica-
tions such as detection, classification, activity recog-
nition, and machine translation with less labeled data.

With the flexibility of the ARN architecture with
the shared latent space, it has natural extensions to
different applications. Different loss functions can be
used, like Wasserstein distance loss, to optimize the
learning capabilities of the ARN. For active learning,
the network should be updated using new labeled data
through different real data and even generated data.
For domain adaptation, the network can be adversar-
ially regularized using the discriminators and be pro-
cessed using CycleGAN concepts. For lifelong learn-
ing, elastic weight consolidation (EWC) and gener-
ative memory replay can be used to incrementally
learn new information. Finally for multitask learning,
the shared latent space allows common sense between
tasks to optimize all.
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