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A B S T R A C T

Memristor crossbar arrays carry out multiply-add operations in parallel in the analog domain, and so can enable
neuromorphic systems with high throughput at low energy and area consumption. On-chip training of these
systems have the significant advantage of being able to get around device variability and faults. This paper
presents on-chip training circuits for multi-layer neural networks implemented using a single crossbar per layer
and two memristors per synapse. Using two memristors per synapse provides double the synaptic weight
precision when compared to a design that uses only one memristor per synapse. Proposed on-chip training
system utilizes the back propagation (BP) algorithm for synaptic weight update. Due to the use of two
memristors per synapse, we utilize a novel technique for error back propagation. We evaluated the training of
the system with some nonlinearly separable datasets through detailed SPICE simulations which take crossbar
wire resistance and sneak-paths into consideration. Our results show that in the proposed design, the crossbars
consume about 9× less power than single memristor per synapse design.

1. Introduction

Specialized neural network based processing systems have signifi-
cant advantages to offer, such as the ability to provide high throughput
while consuming very little power and area [1,2]. This is important as
reliability and power consumption are among the main obstacles for
continued performance improvement in future computing systems.
These systems have wide applications in the areas including signal
processing and pattern recognition.

Memristors [3,4] have received significant attention as a potential
building block for neuromorphic systems [5,6]. In these systems
memristors are used in a crossbar structure. Memristor devices in a
crossbar structure can evaluate many multiply-add operations in
parallel in the analog domain very efficiently (these are the dominant
operations in neural networks). This enables highly dense neuro-
morphic system with great computational efficiency [1].

It is necessary to have an efficient training system for memristor
neural network based systems. Two approaches for training are off-chip
training and on-chip training. The key benefit of off-chip training is that
any training algorithm can be implemented in software and run on
powerful computer clusters. Memristor crossbars are prone to device
variations and faults [7,8]. These variations can occur between
individual devices within a crossbar and in crossbars between different
chips. These are difficult to model in software, thus making off-chip
training challenging for these analog circuits. On-chip training has the
advantage that it can take into account variations between devices and

can use the full analog range of the device (as opposed to a set of
discrete resistances that off-chip training will likely need to target).

This paper presents circuits for on-chip training of memristor
crossbars that utilize two memristors per synapse. Most recent mem-
ristor crossbar circuit fabrications for neuromorphic computing have
been using two memristors per synapse [9,10]. Use of two memristors
per synapse provides double the synaptic weight precision when
compared to a design that uses only one memristor per synapse. This
can enable better training of the neural networks [11] consuming
relatively less power. We design a novel circuit for error back
propagation which is utilized for back propagation algorithm based
training.

Existing works regarding on-chip training circuits for memristor
crossbars include [12,13]. Soudry et al. [12] examined on-chip gradient
descent based training of memristor crossbars with a single memristor
per synapse. They do not consider the training of systems with two
memristors per synapse. Boxun et al. [13] examined on-chip training of
crossbar systems with two memristors per synapse. But they utilized a
pair of crossbars per layer, with one for the forward pass, and the
second for the backward pass. In their design, the second crossbar needs
to be an exact transposed copy of the first. The key limitation of this
design is that the variability and stochastic switching characteristics of
memristors would make it difficult to create an exact copy of a
memristor crossbar without a complex feedback write mechanism.

The rest of the paper is organized as follows: Section 2 describes
related work in the area. Section 3 describes memristor devices and our
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memristor crossbar based neuron circuit design. Section 4 describes the
proposed memristor based training approach. Sections 5 and 6 demon-
strate the experimental setup and results respectively. Finally Section 7
concludes the paper.

2. Related work

2.1. Transistor based systems

Specialized architectures can significantly reduce the power con-
sumption for neural network applications and provide high perfor-
mance [14–17]. Several research efforts examined neural accelerators
consisting of SRAM based synaptic arrays [2,11,15–17]. These systems
utilize ex-situ (off-chip) training of the neural networks. IBM's True-
North chip [5] consists of 5.4 billion transistors. It has 4096 neurosy-
naptic cores interconnected via an intra-chip network that integrates
one million programmable spiking neurons and 256 million configur-
able synapses. The basic building block is a core, a self-contained neural
network with 256 input lines (axons), and 256 outputs (neurons)
connected via 256×256 directed, programmable synaptic connections.
DaDianNao [6] is an accelerator for deep neural network (DNN) and
convolutional neural network (CNN). This is a digital system and
neuron synaptic weights are stores in an on-chip eDRAM.

2.2. Memristor based learning systems

Zamarreño-Ramos et al. [18] examined how a memristor grid can
implement a highly dense spiking neural network and used it for visual
image processing. They examined STDP training to implement spiking
neural networks. Several research efforts examined memristor based
linear separator design and training [9,19–21]. Nonlinearly separable
problems were not studied in these works.

Memristor bridge circuits have been proposed [22,23] where small
groups of memristors (either 4 or 5) are used to store a synaptic weight.
One of the advantages of these bridge circuits is that either a positive or
negative weight can be stored based on the sensed voltage. Adhikari
et al. [24] examined multi-layer neural network training using mem-
ristor bridge circuits. They utilized random weight update rule which
does not require error back propagation. Their results showed that the
training using random weight update rule converges more slowly than
the training using the BP algorithm.

Soudry et al. [12] proposed gradient descent based learning on a
memristor crossbar neural network. This system utilizes two transistors
and one memristor per synapse. Synaptic weight precision of the
proposed implementations are two time more than this design. More-
over, proposed design is more power efficient compared to a design
based on single memristor per synapse.

Work in [13] proposed using two crossbars for the same weight
values. One would be used to propagate forward and another trans-
posed version would be used to propagate errors backward. Since the
switching characteristic of a memristor often contains some degree of
noise, it would be difficult to store an exact copy of a memristor
crossbar without a complex feedback write mechanism. Our proposed
work is able to apply a variable pulse width during the weight update
which is not possible in the system in [13].

Training a multi-layer neural network requires the output layer
error to be back propagated to the hidden layer neurons. Research
efforts [25,26] examined training of multi-layer neural networks using
a training algorithm named “Manhattan Rule”. They did not detail the
error back propagation step and design of the training pulse generation
circuitry. Table 1 summarizes the contributions and drawbacks of the
proposed work and the related works.

3. Memristor crossbar based neuron circuit and linear separator
design

3.1. Memristor devices

The memristor device was first theorized in 1971 by Dr. Leon Chua
[3]. Several research groups have demonstrated memristive behavior
using several different materials. One such device, composed of layers
of HfOx and AlOx [7], has a high on state resistance (RON≈50 kΩ) and a
very high resistance ratio (ROFF/RON≈1000). In general, a certain
energy (or threshold voltage, Vth) is required to enable the state change
in a memristive device [7,27]. When the electrical excitation through a
memristor exceeds the threshold, i.e., V(t)>Vth, the resistance of the
device changes. Otherwise, a memristor behaves like a resistor. The
device characterized in [7] has a threshold voltage of about 1.3 V.
Physical memristors can be laid out in a high density grid known as a
crossbar. The schematic and layout of a memristor crossbar can each be
seen in Fig. 1. A memristor in the crossbar structure occupies 4F2 area
(where F is the device feature size). This is 36 times smaller than a
SRAM memory cell. A memristor crossbar can perform many multiply-
add operations in parallel and the conductance of multiple memristors
in a crossbar can be updated in parallel [12]. Multiply-add operations
are the dominant operations in neural networks and training of neural
networks require update of synaptic weights iteratively. As a conse-
quence, memristors have a great potential as a synaptic element in a
neural network based system design.

3.2. A neuron in a neural network

Fig. 2 shows a block diagram of a neuron. A neuron in a neural
network performs two types of operations, (i) a dot product of the
inputs x1,…,xn and the weights w1,…,wn, and (ii) the evaluation of an
activation function. The dot product operation can be seen in Eq. (1).
The activation function of the neuron is shown in Eq. (2). In a multi-
layer feed forward neural network, a nonlinear differentiable activation
function is desired (e.g. tan−1(x)).

∑DP x w=j i

n
i ij=1 (1)

y f DP= ( )j j (2)

3.3. Neuron circuit

Fig. 3(a) shows a memristor based neuron circuit having three
inputs and one bias input (β). A synapse in the circuit is represented by
a pair of memristors. In this circuit, each data input is connected to two
virtually grounded op-amps (operational amplifiers) through a pair of
memristors. For a given row, if the conductance of a memristor
connected to the first column (σA+) is higher than the conductance of
the memristor connected to the second column (σA-), then the pair of
memristors represents a positive synaptic weight. In the inverse
situation, when σA+< σA-, the memristor pair represents a negative
synaptic weight.

In Fig. 3(a) currents through the first and second columns are
Aσ βσ+…+A β+ +and Aσ βσ+…+A β− − respectively. The output of the op-
amp, connected directly with the second column, represents the neuron
output. In the non-saturating region of the second op-amp, the output yj
of the neuron circuit is given by

y R Aσ βσ Aσ βσ

R A σ σ β σ σ

= [{ +…+ }−{ +…+ }]

= [ ( − )+…+ ( − )]

j f A β A β

f A A β β

+ + − −

+ − + −

Assume that

DP R A σ σ β σ σ= 4 [ ( − )+…+ ( − )]j f A A β β+ − + −

(here 4Rf is a constant).
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When the power rails of the op-amps, VDD and VSS are set to 0.5 V
and −0.5 V respectively, the neuron circuit implements the activation
function h(x) as in Eq. (3) where.

x R A σ σ β σ σ= 4 [ ( − )+…+ ( − )]f A A β β+ − + − . This implies, the neuron
output can be expressed as h(DPj).

⎧
⎨⎪

⎩⎪
h x

if x
if x

if x
( ) =

0. 5 >2
<2

− 0. 5 < − 2

x
4

(3)

Fig. 4 shows that h(x) closely approximates the sigmoid activation
function, f x( ) = − 0.5

e
1

1 + x− . The values of VDD and VSS are chosen such
that no memristor gets a voltage greater than Vth across it during
evaluation. Our experimental evaluations consider memristor crossbar
wire resistance. The schematic of a memristor based neuron circuit
considering wire resistance is shown in Fig. 3(b).

3.4. Synaptic weight precision

The precision of memristor based synaptic weights depends on the

number of memristors used for each synapse and the resistance (or
conductance) range of the memristor device. Assume that the maximum
conductance of the memristor device is σmax and the minimum
conductance is σmin. For a design using only a single memristor per

Table 1
Major contributions and drawbacks of the proposed work and related works.

Contributions/drawbacks

Proposed work – Nonlinear classifier training using BP algorithm.
– Used two memristors/synapse for higher precision of weights.
– Designed a novel circuit for error back propagation which utilize the same crossbar as used in the forward pass.
– Demonstrated the power benefit over a single memristor/synapse design.

[12] BP algorithm based training using single memristor, two transistors per synapse.
[13] Used a variant of the BP algorithm and two memristor crossbars for each layer.
[9,19–21] Examined only training of linear separators. Training of multilayer neural network was not examined.
[24] Used random weight update rule which does not require error back propagation.

Converges more slowly than the training using the BP algorithm.
[18] Spiking neural network, used STDP learning rule.
[25,26] Manhattan Rule based training.

Did not examine the error back propagation step and the design of the training pulse generation circuitry.
[5,6] Digital, only for recognition task.

Fig. 1. (a) Memristor crossbar schematic and (b) memristor crossbar layout.

Fig. 2. Neuron block diagram.

Fig. 3. Memristor-based neuron circuit. A, B, C are the inputs and yj is the output.
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synapse, σ defines the separation between positive and negative
weights [12]. Table 2 shows that the range of synaptic weights when
using two memristors per synapse is two times that of a single
memristor per synapse design.

3.5. Linearly separable classifier design

A neuron can be trained to work as a linear separator. This
subsection demonstrates the functionality of the neuron circuit in
Fig. 3 by implementing a set of linearly separable functions. We have
considered the implementation of the three input Boolean functions
using the proposed neuron circuit. There are 256 three input Boolean
functions and among them 104 are linearly separable. It is cumbersome
to examine the implementation of all 104 of these linearly separable
functions. Therefore, we have implemented the 8 minterms that exist
within the set of all 3 input logic functions. These functions are listed in
Table 3. Each of the 8 minterms was implemented by a separate neuron
and we utilized a 4×16 memristor crossbar (see Fig. 5) to implement
and train all the minterms simultaneously.

Conductance of the memristors in the crossbar was randomly
initialized. We have utilized the single layer perceptron learning
algorithm [28] for training the memristor crossbar. The process used
to apply the training pulses to the memristor crossbar is explained in
Section 4, subsection D. A detailed SPICE simulation of the crossbar that
considered crossbar wire resistance showed that the circuit was able to
correctly classify each of the linearly separable functions. Fig. 6 shows
the training graph indicating successful training. After training, each
neuron in the crossbar recognizes a minterm in Table 3 exclusively.

4. Memristor crossbar based multi-layer neural network training

4.1. Multi-layer circuit design

The implementation of a nonlinear classifier requires a multi-layer
neural network. Fig. 7 shows a simple two layer feed forward neural
network with four inputs, four outputs, and three hidden layer neurons.
Fig. 8 shows a memristor crossbar based implementation of the neural
network in Fig. 7, utilizing the neuron circuit shown in Fig. 3(a). There

are two memristor crossbars in this circuit, each representing a layer of
neurons.

In Fig. 8, the first layer of neurons is implemented using a 5×6
crossbar. The second layer of two neurons is implemented using a 4×8
memristor crossbar, where 3 of the inputs are coming from the 3 neuron
outputs of the first crossbar. The additional input is used as a bias.
When the inputs are applied to a crossbar, the entire crossbar is
processed in parallel within one cycle.

4.2. Training algorithm

In order to provide proper functionality, a multi-layer neural
network needs to be trained using a training algorithm. Back propaga-
tion (BP) [29] and the variants of the BP algorithm are widely used for
training such networks. The stochastic BP algorithm was used to train
the memristor based multi-layer neural network which is described
below:

1) Initialize the memristors with high random resistances.
2) For each input pattern x:

Fig. 4. Plot of functions f(x) and h(x) which show h(x) is approximating f(x) closely.

Table 2
Synaptic weight precision.

Two memristors per synapse One memristor per synapse

Maximum weight σmax - σmin σmax - σ
Minimum weight σmin - σmax σmin - σ
Range 2(σmax - σmin) σmax - σmin

Table 3
8 Three input minterms used for training.

m0 = A’B’C’ m1 = A’B’C m2 = A’BC’ m3 = A’BC
m4 = AB’C’ m5 = AB’C m6 = ABC’ m7 = ABC

Fig. 5. Memristor crossbar implementing 8 three input minterms.

Fig. 6. Training graph of 8 three input minterms utilizing neuron circuit shown in
Fig. 3(a).

Fig. 7. Two layer neural network having four inputs, three hidden neurons and four
output neurons.
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i) Apply the input pattern x to the crossbar circuit and evaluate the
DPj values and outputs (yj) of all neurons (hidden neurons and
output neurons).

ii) For each output layer neuron j, calculate the error, δj, based on the
neuron output (yj) and the target output (tj). Here f is the neuron
activation function and f’ is the derivative of f.

δ t y f DP= ( − ) ′( )j j j j (4)

iii) Back propagate the errors for each hidden layer neuron j.

∑δ δ w f DP= ( )× ′( )j k k k j j, (5)

where neuron k is connected to the previous layer neuron j and wk j,
is the corresponding synaptic weight.

iv) Determine the amount, Δw, that each neuron's synapses should be
changed (2η is the learning rate):

w η δ xΔ = 2 × ×j j (6)

3) If the error in the output layer has not converged to a sufficiently
small value, goto step 2.

4.3. Circuit implementation of the back propagation training algorithm

Without loss of generality we will describe the circuit implementa-
tion of the back propagation training algorithm for the neural network
shown in Fig. 7. The implementation of the training circuit can be
broken down into the following major steps:

1. Apply inputs to layer 1 and record the layer 2 neuron outputs and
errors.

2. Back propagate layer 2 errors through the second layer weights and
record the layer 1 errors.

3. Update the synaptic weights.

The circuit implementations of these steps are detailed below:

Step 1: A set of inputs is applied to the layer 1 neurons, and both
layer 1, and layer 2 neurons are processed. In Eqs. (4) and (5) we
need to evaluate the derivative of the activation function for the dot
product of the neuron inputs and weights (DPj). The DPj value of

neuron j is essentially the difference of the currents through the two
columns implementing the neuron (this can be approximated based
on yj in Fig.. 3(a)). The DPj value of each neuron j is discretized and
f’(DPj) is evaluated using a lookup table. The f’(DPj) value of each
neuron is stored in a buffer. The layer 2 neuron errors are evaluated
based on the neuron outputs (yj), the corresponding targets (tj) and
f’(DPj) as shown in Fig. 9. First (tj-yj) is evaluated and discretized
using an ADC (analog to digital converter). Then (tj-yj), and f’(DPj)
are multiplied using a digital multiplier and the evaluated δj value is
stored in a register.

Step 2: Error back propagation operation in a single memristor per
synapse design is straight forward. If inputs are applied at the
crossbar rows in the forward pass, error inputs are applied at the
crossbar columns in the backward pass (or vice versa). Recall that
the proposed system utilize two memristors per synapse and same
crossbar is utilized for forward and backward passes for a layer. Our
error back propagation step is significantly different form the
existing on-chip training systems [12,13]. In Fig. 10 the layer 2
errors (δL2,1,.., δL2,4) are applied to the layer 2 weights after
conversion from digital to analog form to generate the layer 1
errors (δL1,1 to δL1,3). The memristor crossbar in Fig. 10 is the same
as the layer 2 crossbar in Fig. 8. Assume that the synaptic weight
associated with input i, neuron j (second layer neuron) is wij=σij+ -
σij- for i=1,2,3 and j=1,2,..,4. In the backward phase, we want to
evaluate the layer 1 error

Fig. 8. Schematic of the neural network shown in Fig. 7 for forward pass utilizing neuron
circuit in Fig. 3(a).

Fig. 9. Output layer error generation circuits which take neuron outputs, corresponding
targets, and DPj values as input.

Fig. 10. Schematic of the neural network shown in Fig. 8 for back propagating errors to
layer 1.
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δ Σ w δ f DP i j
Σ σ σ δ f DP
Σ σ δ Σ σ δ f DP

= ( ) ’( ) for = 1, 2, 3 and = 1, 2, ..,4.
= ( ( − ) ) ’( )
= ( − ) ’( )

L i j ij L j L i

j ij ij L j L i

j ij L j j ij L j L i

1, 2, 1,
+ −

2, 1,
+

2,
−

2, 1, (7)

The circuit in Fig. 10 is essentially evaluating the same operations as
Eq. (7), applying both δL2,j and -δL2,j to the crossbar columns for
j=1,2,..,4. The back propagated (layer 1) errors are stored in buffers for
updating crossbar weights in step 3. To reduce the training circuit
overhead, we can multiplex the back propagated error generation
circuit as shown in Fig. 11. In this circuit, by enabling the appropriate
pass transistor, back propagated errors are sequentially generated and
stored in buffers. Access to the pass transistors will be controlled by a
shift register. In this approach we need a single ADC for each crossbar.
Same multiplexing approach could also be used for the layer 2 error
generation in step 1. In this approach the time complexity of the back
propagation step will be O(m) where m is the number of inputs in a
layer of neurons.

Step 3: The weight update procedures for both layers are similar.
They take neuron inputs, and errors to generate a set of training
pulses. The training unit essentially implements Eq. (6). To update a
synaptic weight by an amount Δw, the conductance of the memristor
connected to the first column of the corresponding neuron is
updated by amount Δw/2 (where Δw/2=η δ x× ×j i) and the
memristor connected to the second column of the corresponding
neuron by amount -Δw/2. We will describe the weight update
procedure for the first columns of the neurons (odd crossbar
columns in Fig. 8). The weight update procedure for the second
columns of the neurons (even columns) is similar to the procedure
for the first columns, except that the neuron errors (δj) need to be
multiplied by −1.

For training, pulses of variable amplitude and variable duration are
produced. The amplitude of the training signal is modulated by the
neuron input (xi) and is applied to the row wire connecting the desired
memristor (see Fig. 12(a)). The duration of the training pulse is

modulated by η×δj and is applied to the column wire connecting the
desired memristor (see Fig. 12(b)). The combined effect of the two
voltages applied across the memristor will update the conductance by
an amount proportional to η δ x× ×j i.

Fig. 12 shows the training circuit for the case when δj > 0 and
xi> 0. Table 4 shows the inputs to the training module for each of the
combinations of sign(xi) and sign(δj). The inputs are taken such that
during weight increase Vwai> 0, Vwd=VSS for the training period (so
that potential across the memristor is greater than Vth). During weight
decrease, we want to have Vwai< 0, Vwd=VDD for the training period
(so that potential across the memristor is less than -Vth). The training
circuit utilize a triangular wave VΔ1 (see Eq. (8)) to modulate the
training pulse duration based on η×δj. Duration of V∆1, TΔ1 determines
the learning rate. Detail description on the training circuit is given in
Appendix.

⎧
⎨
⎪⎪

⎩
⎪⎪

V t
if t T

if t T

otherwise

( ) =
1− 0≤ ≤ /2

−1 < ≤

1

t
T

t
T

T∆1

2
∆1

2
2 ∆1

∆1

∆1
∆1

(8)

4.4. Writing to memristor crossbars

Recall that the voltage across a memristor needs to surpass a
threshold voltage (Vth) in order to change the conductance of a given
memristor [14] (for the device considered Vth=1.3 V [7]). Several
studies [7,10,30] examined the change in memristor conductance for
positive and negative voltage pulses for variable pulse height and pulse
width (duration). They reported a strong correlation between change in
conductance, the width of the applied pulse, and the applied voltage
amplitude. It is reasonable to assume that a generated training pulse,
determined according to the training rule, will be able to update
memristor conductance values accordingly.

The physical layout of the memristor devices is assumed as in
Fig. 12. When Vwai-Vwd>Vth the conductance of the memristor is
increased. Alternatively when Vwai-Vwd< -Vth conductance of the
memristor is decreased. In the weight update process, two memristors
in the same row or same column of a crossbar cannot have their
conductance changes in different directions (one increase, another
decrease) simultaneously. As a result, the conductance of the memris-
tors in the crossbar will be updated column by column. For a crossbar
column, the conductance of the memristors will be updated in two
steps: first the memristors requiring a conductivity increase will be
updated, then the memristors requiring a conductivity decrease will be
updated. In this process, the circuit shown in Fig. 12(a) will be required
for each row of the crossbar. For an entire crossbar one circuit shown in
Fig. 12(b) is required which will be used for each column one by one.

For the scenarios mentioned in the first and fourth rows of Table 4,
the conductance of the memristors will be updated in the increasing
phase. Fig. 13(a) shows the weight update operation on the first
crossbar column in the increasing phase. In this phase, voltages Vwa1

and Vwa4, produced by the circuits similar to Fig. 12(a), will be applied
to the first and fourth rows respectively where we want to increase
conductance. The training pulse Vwd, generated by the circuit in
Fig. 12(b), will be applied to the column of the memristor we want to
update (in this case the first column). The remaining rows and columns

Fig. 11. Implementing back propagation phase multiplexing error generation circuit.

Fig. 12. Training pulse generation module. Inputs to the circuit are mentioned for the
scenario shown in the first row of Table 4.

Table 4
Input to the training module for different scenarios.

Sign of δj Sign of xi Weight update ip1 ip2 ip3 ip4

+ + increase -xi -(vth-vb) δj V∆1
+ – decrease -xi -(-vth+vb) -δj V− ∆1
– + decrease xi -(-vth+vb) δj V− ∆1
– – increase xi -(vth-vb) -δj V∆1
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of the crossbar will be set to 0 V.
The potential difference across the memristors to be updated will be

Vwai-Vwd for i=1,4. For the training duration those potential differences
will be Vth-Vb+|xi|-(-Vb) or Vth+|xi|. As Vth+|xi|> Vth the conductance
of the selected memristors will be changed. The potential difference
across other memristors will be 0 V, Vb, Vth-Vb+|xi|, or Vth-2Vb+|xi| for
i=1,4. To ensure that other memristors are not changing their
conductance, we need to select Vb such that Vb<Vth, Vth-Vb+max
{xi}<Vth, and Vth-2Vb+max{xi}> -Vth. We used the value Vb=1.2 V.
Fig. 14 shows the plot of training signals and potential difference across
some memristors for this weight update step. Only the memristors m1,1
and m4,1 get potential across them greater than Vth for the training
duration (2–8 ns). Except that no memristor gets potential across it
greater than Vth in this step.

For the scenarios mentioned in the second and third rows of Table 4,
the conductance of the memristors will be updated in the decreasing
phase in a procedure similar to the one used for the increasing phase
(see Fig. 13(b)). The complexity of the weight update operations for a
layer of neurons is O(n) where n is the number of neurons in the layer.

5. Experimental setup

The memristor crossbar circuits were simulated in SPICE so that the

memristor grid could be evaluated very accurately considering the
crossbar sneak-paths and wire resistances. A wire resistance of 5 Ω
between memristors in the crossbar is considered in these simulations.
Each attribute of the input was mapped within [-Vread, Vread] voltage
range. As mentioned in Section 4, duration of V∆1 determines the
learning rate. Table 5 shows the simulation parameters. The resistance
of the memristors in the crossbars were randomly initialized between
0.909 MΩ and 10 MΩ.

Two sets of crossbar simulations were carried out: one considering
memristor device variation and stochasticity, and the other not
considering these. We assumed a maximum deviation of 30% in
memristor device responses due to device variations and stochasticity.
That is, when we want to update a memristor conductance by amount x,
the corresponding training pulse would update the conductance by an
arbitrary value randomly taken from the interval [0.7x, 1.3x].

Simulation of the memristor device used an accurate model of the
device published in [31]. The memristor device simulated in this paper
was published in [7] and the switching characteristics for the model are
displayed in Fig. 15. This device was chosen for its high minimum
resistance value and large resistance ratio. According to the data
presented in [7] this device has a minimum resistance of 50 kΩ, a
resistance ratio of 103, and the full resistance range of the device can be
switched in 20 μs by applying 2.5 V across the device.

MATLAB (R2014a) and SPICE (LTspice IV) were used to develop a
simulation framework for applying the training algorithm to a multi-
layer neural network circuit. SPICE was mainly used for detailed analog
simulation of the memristor crossbar array and MATLAB was used to
simulate the rest of the system. The circuits were trained by applying
input patterns one by one until the errors were below the desired levels.

We have examined the training of the memristor crossbar arrays for
five nonlinearly separable datasets: (a) 2 input XOR function, (b) 3
input odd parity function, (c) 4 input odd parity function, (d) Wine
[32], and (e) Iris [33]. The Wine dataset is consisting of 178 instances
(samples) belonging to three classes where each instance has 13
attributes. For this dataset, we used 118 samples for training and 60
samples for testing. The Iris dataset consists of 150 samples (99 training
and 51 test samples) belonging to three classes: Iris Setosa, Iris
Versicolour, and Iris Virginica. Each pattern consists of 4 attributes/
features. A multi-layer neural network is required to learn a nonlinearly
classifier. Table 6 shows the network configurations used in these
experiments. A neural network configuration descried by x → y → z
means the network has x inputs, y hidden neurons, and z output
neurons.

6. Results

Fig. 16 shows the training graphs obtained from the SPICE simula-
tions for different datasets utilizing the training process described in
Section 4. The results show that the neural networks were able to learn
each classification application in both cases: without considering device
variation, stochasticity and considering device variation, stochasticity.

Fig. 13. Demonstration of the weight update operation in the first column of a crossbar:
(a) increasing phase and (b) decreasing phase. Upward arrow indicates increase of
conductance and downward arrow indicates decrease of conductance.

Fig. 14. (a) Training signals while x1=0.2 V and x4=0.4 V and (b) voltage across some
memristors for the operation in Fig. 13(a). Vmi,j is the voltage difference across the
memristor mi,j.

Table 5
Simulation parameters.

Memristor RON 50 kΩ
Memristor ROFF 10 MΩ
Maximum read voltage, Vread 0.5 V
Threshold voltage 1.3 V
Memristor switching time for write voltage 2.5 V 20 μs
Crossbar each wire segment resistance 5 Ω
Maximum deviation of memristor device response due to device

variation & stochasticity
30%

Value of Rf in Fig. 3(a) 14 MΩ
Learning rate 5 ns to

−8 ns
ADC precision (to discretize DPj values) 8 bits
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Fig. 15. Simulation results displaying the input voltage and current waveforms for the memristor model [31] that was based on the device in [7]. The following parameter values were
used in the model to obtain this result: Vp=1.3 V, Vn=1.3 V, Ap=5800, An=5800, xp=0.9995, xn=0.9995, αp=3, αn=3, a1=0.002, a2=0.002, b=0.05, x0=0.001.

Table 6
Neural network configurations.

Dataset Neural network configurations Number of training data

2 input XOR 2 → 5 → 1 4
3 input odd parity 3 → 7 → 1 8
4 input odd parity 4 → 12 → 1 16
Wine 13 → 20 → 3 118
Iris 4 → 15 → 3 99
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Fig. 16. SPICE training results of memristor neural networks for both cases: without considering memristor device variation, stochasticity (no device var.) and considering device
variation, stochasticity (device var.).

Table 7
Recognition error on test data for different datasets and SPICE training approaches.

Recognition error (%)

no device var. device var.

Iris (51 test data) 2.61 3.92
Wine (60 test data) 1.34 1.93
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For the 2 input XOR, 3 input odd parity, and 4 input odd parity
functions, 100% recognition accuracy was achieved for both training
cases (device variation and no variation). Table 7 shows the recognition
errors on test data for Iris, and Wine datasets. Test errors considering
memristor device variation, stochasticity and without considering
device variation, stochasticity are very close.

6.1. Power benefit over a single memristor/synapse design

In a single memristor per synapse design a conductance σ , between
the maximum and minimum device conductances, needs to be selected
to define the ranges of the positive and negative weights [12]. To have
equal ranges for both positive and negative weights, σ needs to be equal
to (σmax - σmin)/2. This provides range for positive weights [0, σ ] and
range for negative weights [-σ , 0). In such systems, trained weights are
distributed symmetrically centered around σ . Conductance of a mem-
ristor to implement a small positive (Δ) or negative weight (-Δ) would
be σ+Δ or σ -Δ respectively.

In the proposed design, before training, memristors are initialized
with random high resistance values. After training, memristor con-
ductances are concentrated near the high device resistance (or low
conductance σmin). In this system a small positive weight (Δ) could be
implemented having σA+=σmin+Δ and σA- =σmin in Fig. 3(a). Similarly,
a small negative weight (-Δ) could be implemented having σA+=σmin

and σA- =σmin+Δ. Hence, in the proposed system, small positive or
negative weights could be implemented having conductance of the
corresponding memristor pair around σmin. On the other hand, in a
single memristor per synapse design, they are around σ or (σmax - σmin)/
2. Fig. 17 shows the distributions of the trained weights for wine
dataset for the two cases: single memristor/synapse and two memris-
tors/synapse.

In the recognition phase, the memristor crossbars consume signifi-
cant amount of power. In the single memristor per synapse design,
crossbar power is about 90% of the total system power. Due to the
lower conductances of the trained weights in the proposed design, it has
significant power benefit over the single memristor design. Table 8
shows the average (over different test data) crossbar (layer 1+ layer 2)
power consumptions for the two systems. It can be observed that in the

proposed system, crossbar power consumptions are about 9× less than
the power consumptions in the single memristor per synapse design.

7. Conclusion

In this paper we have designed on-chip training systems for
memristor based multi-layer neural networks utilizing two memristors
per synapse. We utilized back propagation algorithm for training and
utilized same crossbar for both forward and backward passes for a
layer. We designed a novel circuit for error back propagation. We have
demonstrated successful training of some nonlinearly separable data-
sets through detailed SPICE simulations which take crossbar wire
resistance and sneak-paths into consideration. In the proposed design,
the crossbars consume about 9× less power than a single memristor per
synapse design.
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