Investigating Survival Strategies of a Radioresistant Bacterium: Deinococcus Radiodurans

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Decoding the Mystery of the Most Radioresistant Life Form in the World: *Deinococcus Radiodurans*
Danielle Gerbic
Advisor: Matthew Lopper, Ph.D.

Abstract
When a cell’s DNA is damaged, replication proteins fall off of the replication fork and many cells die; however, some cells are able to use a replication restart process. *Deinococcus Radiodurans* is one bacterium that can utilize this replication restart process. Three replication proteins were synthesized and used to test if they were what allowed *D. rad* to use replication restart and reload the proteins onto the replication fork. Studies were unable to determine the precise purpose of these proteins in *D. rad*.

Introduction
During DNA replication a helicase separates the double stranded DNA into two single strands. This helicase is what creates a replication fork. Replication restart is able to “reload” the replication proteins back onto the fork. *D. rad* has been studied since the 50s and has been classified as the most radioresistant life form in the world. *D. rad* has proteins PriA, SSB, and DnaB that may be the reason it is able to withstand high amounts of radiation.

Materials and Methods
- Transformation and synthesis of replication proteins
 - PriA, SSB, and DnaB
 - Fast protein liquid chromatography
- DNA fork substrate construction
 - Labeled oligo DNA
- Helicase Assays
 - florescent polarization spectrophotometer
 - Polyacrylamide gels

Results

DNA Fork Substrate

<table>
<thead>
<tr>
<th>Partial Fork 2C</th>
<th>oML.211</th>
<th>25</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oML.367</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Gel Result

<table>
<thead>
<tr>
<th>Protein</th>
<th>Lane Number</th>
<th>Amount Gels</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>DnaB</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SSB</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PriA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DnaB</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ATP</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

FPLC Readout

Conclusions
- Purifications produced pure proteins
 - 75%-95% purity
- DNA fork substrate was successfully created
- DnaB helicase failed to unwind duplex DNA
 - In both the helicase assays and gels

Future Directions
- Resynthesizing the replication proteins
 - Enzymatic activity could have been lost
- Studying protein-protein interactions
 - We studied protein-DNA interactions
- Finding another accessory factor for replication
- Perform helicase assays on an *E. coli* cell
 - *D. rad* could be the problem