Investigation and Optimization of a Mechanical Regenerative Braking Launch Assist Device

Vijay Krishna Jayaprakash
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
http://ecommons.udayton.edu/stander_posters/466

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mscil1@udayton.edu.
Objective: The goal of this project is to identify ideal spring characteristics for a strain-based, regenerative braking launch assist that is capable of propelling a 2000 pound car at 5 miles per hour.

Motivation
- A regenerative brake and launch assist (RBLA) mechanism has been formulated that uses springs to store energy.
- This project will identify an ideal spring configuration to be used with the mechanism.

Initial Results
The following plots display the weight, W, and storage volume, Vu, for a spring that stores the necessary RBLA energy using different wire and coil diameter combinations.

For an extension spring:
\[
W = \frac{8wDF}{\pi d^3}
\]
\[
U_s = \frac{1}{2}kx^2 = \frac{1}{2}mv^2
\]

For a torsional spring:
\[
\sigma = k_b \frac{32T}{\pi d^3}
\]
\[
U_s = \frac{1}{2}k\theta^2 = \frac{1}{2}mv^2
\]

Future Direction
- To derive equations and create similar plots for spiral and other spring configurations.
- Test the prototype with different springs to assess frictional and hysteresis losses.

Technique Utilized
- Machine design equations were generated that relate the stiffness(k), stress and energy(U_s) for each spring configuration.
- Optimization involves minimizing both weight and volume of spring while storing energy.
- Pareto front $W + Y(Vu)$ optimization technique used for various Y values to locate minimum.
- Initial values Y_i were selected such that on average, $W = Vu$.
- Extension springs are better than torsion springs.
- Larger wire and coil diameters leads to optimum design.