Numerical Study on the Characteristics of Metal-Insulator-Metal Diode Integrated with Spiral Optical Antenna

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/475

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Numerical study on the characteristics of metal-insulator-metal diode integrated with spiral optical antenna

Zhijun Yang
Advisor: Qiwen Zhan

Objective: Integrates MIM structure with a spiral slot optical antenna to achieve both extremely high field enhancement and circular polarization extinction ratio.

Surface plasma polaritons (SPPs) excitation

Integrating MIM structure with spiral slot optical antenna structure. Specifically, small working area for the MIM structure is purposely designed to provide small mode volume for the SPPs wave and extremely high field enhancement is obtained with this design. Furthermore, a double-layer spiral slot optical antenna is adopted to get even higher field enhancement.

Results: High field enhancement

In conclusion, with numerical modeling it is demonstrated that extremely high field enhancement can be obtained for MIM devices through incorporating the latest development in optical antenna with the MIM diode. In addition, the device studied in this work can be optimized to offer distinction between the left-handed circular polarization state and the right-handed circular polarization state, making it an efficient miniature circular polarization analyzer.

Method

Conclusions