4-9-2014

Purification and Biochemical Characterization of a Xylanolytic Glycoside Hydrolase from Caldicellulosiruptor saccharolyticus

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

https://ecommons.udayton.edu/stander_posters/506

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Purification and Biochemical Characterization of a Xylanolytic Glycoside Hydrolase from *Caldicellulosiruptor saccharolyticus*

Caroline Wise and Donald A Comfort, Ph.D.
Chemical and Materials Engineering

Background

The current global energy crisis is a result of increasing energy demands coupled with depleting fossil fuel reserves. One solution to this crisis is the use of lignocellulosic biomass for conversion into biofuels. Biomass is comprised of cellulose and hemicellulose, which are polysaccharides that can be broken down via enzymatic hydrolysis into simple sugars and then converted to biofuels. Glycoside hydrolases are enzymes that have already proven to be effective in metabolizing carbohydrates.

Introduction

The objective of this research is to determine if a glycoside hydrolase from the thermophilic bacterium *Caldicellulosiruptor saccharolyticus* is effective at enzymatic hydrolysis of cellulose and hemicellulose. An enzyme from *C. saccharolyticus*, Csac_2410, was cloned, expressed as a protein, purified, and biochemically characterized for pH optima, temperature optima, and substrate specificity. DNS assays for reducing sugars were performed for the biochemical characterization.

Results

![Graph showing specific activity of the enzyme at different incubation temperatures and pH values.](image)

Conclusions

- *C. saccharolyticus* is a thermophilic bacterium containing over 60 glycoside hydrolases
- The Csac_2410 gene effectively hydrolyzes xylan at 80°C and pH 6.25
- Csac_2410 could potentially be a part of a suite of enzymes that work together to hydrolyze the cellulose and hemicellulose in lignocellulosic biomass for the upstream processing of bioethanol and other biofuels

Acknowledgments

UD University Honors Program
UD Chemical and Materials Engineering