Visibility Improvement Through Hyperspectral Band Integration

Paheding Sidike
University of Dayton, stander@udayton.edu

Yakov Diskin
University of Dayton, stander@udayton.edu

Saibabu Arigela
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Part of the [Arts and Humanities Commons](http://ecommons.udayton.edu/stander_posters), [Business Commons](http://ecommons.udayton.edu/stander_posters), [Education Commons](http://ecommons.udayton.edu/stander_posters), [Engineering Commons](http://ecommons.udayton.edu/stander_posters), [Life Sciences Commons](http://ecommons.udayton.edu/stander_posters), [Medicine and Health Sciences Commons](http://ecommons.udayton.edu/stander_posters), [Physical Sciences and Mathematics Commons](http://ecommons.udayton.edu/stander_posters), and the [Social and Behavioral Sciences Commons](http://ecommons.udayton.edu/stander_posters)

Recommended Citation

Sidike, Paheding; Diskin, Yakov; and Arigela, Saibabu, "Visibility Improvement Through Hyperspectral Band Integration" (2014). *Stander Symposium Posters*. Book 534.
http://ecommons.udayton.edu/stander_posters/534

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Visibility Improvement Through Hyperspectral Band Integration
Paheding Sidike, Yakov Diskin, Saibabu Arigela, and Vijayan K. Asari

Objective
- To exploit band information of the hyperspectral imagery
- To develop adaptive contrast enhancement technique
- To assist in object detection/classification

Spectral Angle Mapper
The Spectral Angle Mapper classification (SAM) is an automated method which is insensitive to illumination change since it uses only the vector direction and not the vector length. This technique may be mathematically modeled as

\[
SAM(s_i, s_j) = \cos^{-1}\left(\frac{\sum_{l=1}^{L} s_{il} s_{jl}}{\sqrt{\sum_{l=1}^{L} s_{il}^2} \sqrt{\sum_{l=1}^{L} s_{jl}^2}}\right)
\]

where \(s_i, s_j\) are the spectral signatures of two pixel vectors, and \(L\) is total band number in a classification.

Methodology
The hyperspectral image enhancement procedure is broken into nine steps resulting in an improvement of visibility.

1. Raw Hyperspectral Image
2. Image Normalization
3. Mean Spectral Signature
4. Spectral Matching (i.e. SAM)
5. SAM Scaling
6. SAM Boosting
7. Super Resolution
8. Image Restoration
9. Enhanced Image

Super Resolution
The single image resolution enhancement is applied to the SAM image. This technique uses adaptive kernel regression technique based on multi-level local covariance to estimate the high resolution image from a low resolution input.

Sample Results
Super Resolution Results

Spectral Angle Mapper

Super Resolution Results

Sample Results

Indoor System

Outdoor System

Hyperspectral Sensor

- **Spectral Range**: 400 - 900 nm
- **Spectral Resolution**: 2.1 nm
- **Spectral Channels**: 240
- **Spatial Channels**: 640
- **Max Frame Rate**: 145 fps

SAM: Spectral Angle Mapper

Input LR patch

Original Image

Enhanced Image