Motivation

- Photovoltaics (Solar Panel) include materials: 1) Energy intensive (i.e. silicon, aluminum, copper); 2) high value (i.e. indium, tellurium); 3) Toxic (i.e. cadmium, selenium, mercury)
- PV market has been growing exponentially in recent years.
- Lifetime of PV module is 25+ and large portion of end-of-life PV modules started to retire in the U.S.
- Proper planning for managing End-of-life PV modules are necessary.
- Following data/tools are used to solve the proposed problem: Open PV, ArcGIS, mathematical modeling

Cost Benefit Analysis

The figure shows variation of each cost as the number of PVTBC increases.
- The Total Cost is the summation of all costs.
- The Minimum Total Cost is located between the two and three centers scenario.
- The two recycling center scenario has the lowest total project cost.
- The three recycling center scenario is the most environmentally friendly.

Mathematical Modeling

- The objective of this optimization is to minimize the total travel cost between Reverse Logistics Companies, PV installations, and the PV Recycling Centers.
- The capacity limitations of each Reverse Logistics Company and PV Recycling Center are considered constraints.

Objective Function:

Minimize:

\[
\sum_{i} \sum_{j} \sum_{k} \left(C_j + m \cdot C_j \times (D_j + D_k) + w \cdot C_j \times W_j \times X_{jk} \right)
\]

Subject to:

\[
\sum_{j} \sum_{k} X_{jk} = 1
\]

\[
\sum_{k} (W_j \cdot X_{jk}) \leq W_j
\]

\[
\sum_{i} (W_j \cdot X_{jk}) \leq W_k
\]

California Case

- Finding the locations of Recycling Centers.
- Finding the locations of Reverse Logistics Companies.

Results

- A decentralized scenario will decrease the total travel distance and cost.
- Total transportation cost decreases as the capacity of PVTBC increases.

Acknowledgement

This work is supported by the University of Dayton for the research council seed grant (Grant No. IGRQ14). Part of this research was supported by the Koehler International Student award from the University of Dayton.

Reference
