Root Cover Pebbling on Graphs

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
https://ecommons.udayton.edu/stander_posters/583

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Covering Your Roots: Root Cover Pebbling on Graphs

Name: Claire Sonneborn
Advisor: Dr. Aparna Higgins

Components of a Graph
- Vertices: dots of the graph, represent objects
- Edges: lines of the graph, represent relationship between two vertices

Adjacent Vertices
- Two vertices are adjacent if they are connected by an edge.
- Two vertices are not adjacent if there is no edge between them

Pebbling
- Place pebbles on the vertices of a graph.

Pebbling Move
1. Pick up 2 pebbles from one vertex
2. Remove 1 pebble from graph
3. Move 1 pebble to adjacent vertex

Cover Pebbling Number
The minimum number of pebbles needed so that, no matter where they are originally placed, we can use pebbling moves to place one pebble on each vertex.

Types of Graphs we Consider

- One root vertex with pendants (paths) hanging off.
- One cycle with one pendant or multiple pendants

Root Cover Pebbling Number
The minimum number of pebbles needed so that, if all pebbles are initially placed on the root vertex, we can use pebbling moves to place one pebble on each vertex.

Finding Root Cover Pebbling Numbers

Let \(q = \) number of pendants.
And \(n_1, n_2, \ldots, n_q \) be the lengths of pendants.

\[
R = 1 + \sum_{i=1, 2, \ldots, q} \left(2^{n_i+1} - 2 \right)
\]

Let \(c \) be the length of the cycle and \(R(c) \) be the root cover pebbling number of the cycle

\[
R(c) = (2^{c+1/2} - 1) + (2^{c+1/2} - 1)
\]

Minimizing Root Cover Pebbling Number

When the number of vertices remains constant, \(R \) is minimized when the pendants are equal length.

In the case of one pendant, if the number of vertices remains fixed, \(R \) is minimized when the cycle is twice as long as the pendant.

When the number of pendants remains constant, \(R \) is minimized when the pendants are close together with the root in the middle.

Additional Work
Relationship between number of pendants and root cover pebbling number
How to choose the placement of the root vertex on a cycle with multiple pendants