A Covariance Analysis of Consumer Healthcare Expenditures and Healthcare Sector Price Movements

Courtney E. Cady
University of Dayton, stander@udayton.edu

David A. Christian
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
A Covariance Analysis of Consumer Expenditures on Health Care and Health Care Sector Price Movement

Courtney Cady and David Christian
Advisor: Dr. Bob Dean and Dr. Trevor Collier

Study Objective:
Determine if Health Care (HC) sector stock prices covary directly with consumer expenditures on health care

Research:
• Univariate Regression Analysis
• Time Period 2004-2013
• Data Sets
 • HC Consumer Expenditures
 • HC Sector ETF (XLV)
 • HC Equipment (XHE)
 • Biotech (XBH)
 • Pharmaceuticals (XHD)
 • HC Services (XHS)
• Data Frequency: Quarterly Data

Model Specifications
XLV=A+B(HCCE)
XHE=A+B(HCCE)
XBI=A+B(HCCE)
XHD=A+B(HCCE)
XHP=A+B(HCCE)
XHS=A+B(HCCE)

Hypothesis:
There is a direct relationship between HCCE and HC sector Prices: B>0 ;Tstat > 2

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Dependent Variable</th>
<th>B</th>
<th>Tstat</th>
<th>Rsquared</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2014</td>
<td>XLV</td>
<td>0.027</td>
<td>6.339</td>
<td>0.489</td>
</tr>
<tr>
<td>2011-2014</td>
<td>XHE</td>
<td>0.105</td>
<td>7.327</td>
<td>0.891</td>
</tr>
<tr>
<td>2006-2014</td>
<td>XBI</td>
<td>0.140</td>
<td>9.355</td>
<td>0.849</td>
</tr>
<tr>
<td>2006-2014</td>
<td>XPH</td>
<td>0.100</td>
<td>10.115</td>
<td>0.86955</td>
</tr>
<tr>
<td>2011-2014</td>
<td>XHS</td>
<td>0.222</td>
<td>17.870</td>
<td>0.982</td>
</tr>
</tbody>
</table>

Table 2 Logarithmic Regressions Results

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Dependent Variable</th>
<th>B</th>
<th>Tstat</th>
<th>Rsquared</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2014</td>
<td>XLV</td>
<td>0.010682</td>
<td>5.707758</td>
<td>0.436835</td>
</tr>
<tr>
<td>2011-2014</td>
<td>XHE</td>
<td>0.003984</td>
<td>7.113735</td>
<td>0.783299</td>
</tr>
<tr>
<td>2006-2014</td>
<td>XBI</td>
<td>0.002973</td>
<td>8.460272</td>
<td>0.677958</td>
</tr>
<tr>
<td>2006-2014</td>
<td>XPH</td>
<td>0.004356</td>
<td>9.111437</td>
<td>0.715562</td>
</tr>
<tr>
<td>2011-2014</td>
<td>XHS</td>
<td>0.002282</td>
<td>16.92373</td>
<td>0.959787</td>
</tr>
</tbody>
</table>

Conclusions:
• Linear Models B>0 and Tstat>2
• Log Linear Models B>0 and Tstat>2
• XHS Best Linear and Log Linear Relationship, Rsquared>.95