4-9-2015

Automatic Perception and Target Detection in LiDAR Data

Nina M. Varney
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mshlangen1@udayton.edu.
Automatic Target Detection in LiDAR Point Clouds

Background
Light Detection and Ranging (LiDAR) data is a set of geospatially located points which contains X, Y, Z and possible RGB and intensity information that can be used to construct a 3D scene.

Sensor
All campus data was collected using the FARO Focus X330 ground-based scanner:
- +/-2mm distance accuracy
- 0.6 – 330m range
- 50% noise reduction

Objective
The goal of this project is to aid analysts in the task of understanding LiDAR data. In order to perform this task, we aim to achieve automatic perception of objects within the scene. This can be broken down into three main parts:
- Developing a digital terrain model (DTM),
- Segmentation of individual objects within the scene
- Accurate classification of the identified objects.

Methodology

<table>
<thead>
<tr>
<th>Original Point Cloud</th>
<th>Ground Extraction</th>
<th>Surface Normal Calculation</th>
<th>Voxel Determination</th>
<th>SVM-based Cascade of Classifiers</th>
<th>VCA Feature Calculation</th>
<th>Connected Component Segmentation</th>
<th>Classified Point Cloud</th>
</tr>
</thead>
</table>

3D Object Classification
The original data is a series of scenes collected from Surrey, British Columbia in 2013.
- RANSAC plane estimation is used to find the ground points for each scene.
- By calculating the connected components of each voxel, individual objects can be segmented out within the scene.
- Each individual object is represented by a distinct color.
- Volume component analysis is then used as a feature extraction method.
- A cascade of support vector machines functions as our classifier.

Target Detected Point Clouds
- Original point cloud using height distribution to determine the object color.
- Classified point cloud using corresponding color codes to identify individual objects.

In-Class Target Detection
Once the data is separated into distinct classes, we begin the challenging task of performing precise object classification. For this particular application, the focus is on distinguishing between different vehicle classes, specifically sedans, mid-sized vehicles, trucks and military and construction equipment:
- Registration is performed using an iterative closest point algorithm.
- Alpha shapes are used to triangulate between points and a volume is calculated.
- Volumes remain within the same range of 7.5 to 12 cubic meters regardless of resolution.

Continuing Work
- Use LiDAR data to analyze changes in volume over time.
- Expand 3D classification methods to 3D Structure from Motion models.