Assessing Shape Repeatability in Variable Geometry, Polymer Extrusion Dies

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

https://ecommons.udayton.edu/stander_posters/633
Assessing Shape Repeatability in Variable Geometry Polymer Extrusion Dies

Alex Watt

Advisors: David Myszka, Ph.D., Andrew Murray, Ph.D.

Project Objective: To successfully produce shape changing extrusion dies for practical application in the real world. Examining shape repeatability of prototyped dies is a large factor to determine whether or not the design performs effectively.

Introduction/Motivation

- **Extrusion:** Manufacturing process that uses pressure to force melted plastic through a die
- Current dies define parts with uniform cross section
- Varying cross section allows for innovative parts
- Two batches of prototypes have been produced and tested to examine profile comparison

Computational Analysis Method

- Starrett Profile360 In-Line Profile Measurement System used laser to scan 6 profiles
- Matlab used to examine profiles and compare one another
- Outliers removed, profiles linearized, rotated, and centered before stacked and compared

Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Shape</th>
<th>d</th>
<th>Std(d)</th>
<th>95% CI</th>
<th>ΔA/A (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1</td>
<td>P</td>
<td>114</td>
<td>139</td>
<td>272</td>
<td>0.2</td>
</tr>
<tr>
<td>T-1</td>
<td>R</td>
<td>106</td>
<td>132</td>
<td>257</td>
<td>0.05</td>
</tr>
<tr>
<td>T-2</td>
<td>P</td>
<td>134</td>
<td>66</td>
<td>161</td>
<td>0.02</td>
</tr>
<tr>
<td>T-2</td>
<td>R</td>
<td>111</td>
<td>141</td>
<td>276</td>
<td>0.18</td>
</tr>
<tr>
<td>T-3</td>
<td>P</td>
<td>135</td>
<td>124</td>
<td>242</td>
<td>0.16</td>
</tr>
<tr>
<td>T-3</td>
<td>R</td>
<td>148</td>
<td>97</td>
<td>272</td>
<td>0.09</td>
</tr>
</tbody>
</table>

- Similar results for Corner Die
- Average d = 150 microns
- Much larger deltas for prismatic die
- Direct result of the meshing issues and leakage

Conclusions/ Future Considerations

- 4 Bar Crescent Joint Die and Corner Die exhibited good shape repeatability
- 4 Bar Prismatic Die has since been improved to eliminate issues with first prototype
- 2nd batch of prototypes have been created and tested
- Focuses on sliding prismatic with more drastic area change with a practical application (car weather stripping)

Acknowledgements

- Creative Extruded Products
- Kevin Giaier, M.S.

Testing

- Dies were bolted to extruder
- Prototyped dies were tested at different line speeds with varying actuation patterns
- 4 Bar Prismatic had issues with leakage due to stacked clearances and had issues with gear meshing

Measurements

<table>
<thead>
<tr>
<th>Measurements</th>
<th>PVC</th>
<th>Santoprene</th>
<th>TPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw Speed (RPM)</td>
<td>64</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Barrel Set Temperature (°F)</td>
<td>310</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>Melt temperature (°F)</td>
<td>296</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>Back Pressure (PSI)</td>
<td>530</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Line speed (ft/min)</td>
<td>5.6</td>
<td>4.0</td>
<td></td>
</tr>
</tbody>
</table>