Joint Design and Analysis of Leakage in Movable Extrusion Dies.

Suresh Kumar Kanathala

University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

http://ecommons.udayton.edu/stander_posters/676
Joint Design and Analysis of Leakage in Variable Geometry Dies for Polymer Extrusion
Suresh Kumar Kanathala
Advisors: Dr. David Myszka & Dr. Andrew Murray
Department of Mechanical & Aerospace Engineering

Research objectives: Computational fluid dynamics models have been constructed and used to assess the effect of the clearance size on the leakage through the joints. The goal of this analysis is to optimize the geometry of the joints.

Polymer extrusion
Extrusion is the process of utilizing pressure to force melted plastic through die orifice. The channel shape of the die is what primarily defines the cross section profile of the extruded product.

A variable geometry die allows the cross section of the extruded part to change over its length, thereby introducing the capacity to manufacture plastic components faster and with lower tooling costs than injection molding.

Joints used in Variable Geometry Dies
• Crescent joint
 Deemed as best option when sharp corner is not required in extrudate.

• Corner Joint
 Considered as best option when a sharp corner is required.

• Prismatic Joint
 Necessary when a cross-sectional feature changes length.

CFD Model to Assess Leakage at a Single Joint for Crescent Die

Initial CFD Domain

Assessment of Leakage
From 1-D incompressible flow, we have
\[\dot{m}_u = CA \sqrt{2\rho (p_u - p_d)} \]

Calculate Resistance to Flow CA, For various clearance’s \(c_1 \) and \(c_2 \)

Project Objectives:
1. Since clearance = \(f \) (cost \(^{-1}\)), select clearance that balances cost and flow resistance.
2. Determine the flow resistance of different joint designs.

Future Perspective
CFD model will be altered to incorporate flow through the die and to measure leakage flow through the joint.