Study on Graphene’s photovoltaic potential and its comparison with other conventional materials

Ashish Gogia
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
http://ecommons.udayton.edu/stander_posters/665

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Study on Graphene’s photovoltaic potential and its comparison with other conventional materials

Ashish Gogia
Advisor: Kevin Hallinan, Ph.D.

INTRODUCTION

Graphene has unique optical properties that make it different from other materials that are used to turn light to electricity. Graphene when absorbs a photon, generates multiple electrons while materials like silicon and gallium arsenide, generate a single electron for each photon absorbed. It has vast applications in fields of biological engineering, optical electronics, ultra filtration, photovoltaic, nanotechnology etc.

GRAPHENE’S POTENTIAL

Graphene has remarkable strength and electrical properties and is getting to a point where it can compete with today’s technologies. Germanium can detect only photons that have enough energy to push electrons across an energy barrier, enabling electrical charge to move freely though the semiconductor. But graphene can detect any wavelength because it has no band gap. The latest devices using graphene generated 50–100 times more current than the earlier detectors from the same amount of light because of fast moving electrons.

GRAPHENE FACTS

- Graphene is 200 times stronger than steel.
- It is the most conductive materials due to fast moving electrons
- It is the world’s first 2D material
- Graphene layer is 1 million times thinner than human hair.

CONCLUSION

Graphene has enormous potential to create incredible future technologies and vastly enhance existing products.