Star Decompositions of the Complete Split Graph

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
https://ecommons.udayton.edu/stander_posters/744

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Introduction
A graph is a discrete mathematical structure that consists of a set of vertices and a set of edges between pairs of vertices. A graph decomposition is a partitioning of the edges of a graph into disjoint sets in such a way that the induced subgraphs produced are isomorphic to each other. The graphs we focus on here are stars and complete split graphs (see below).

Special Cases
- \(m = n - 1 \): decomposable if and only if \(t \mid m \)
- \(t = 1 \): trivial
- \(t = 2 \): decomposable if and only if total number of edges is even \([3]\)

Necessary Conditions
- If \(G \) can be decomposed into \(t \)-stars, then \(t \left(\frac{n-m}{2} \right) + m(n-m) \)

Casework and Results
- \(n - m < t \): decomposable if and only if
 - \(t \left(\frac{n+m-1}{2} \right) \)
- \(n - m = t \): decomposable if and only if
 - \(t \) is odd and \(m \geq \frac{t+1}{2} \)
- \(t < n - m < 2t \): decomposable if
 - \(t \left(\frac{n+m-1}{2} \right) \) or
 - \(t \) is odd, \(t \mid m \), and \(n - m = t + 1 \)
- \(n - m \geq 2t \): decomposable if
 - \(t \left(\frac{(n-m)(n+m-1)}{2} \right) \) and \(t \mid m(n-m) \),
 - \(t \left(\frac{n+m-1}{2} \right) \), or
 - \(n - m \) is odd and \(m \equiv -1 \mod t \)

Future work
Since we were unable to completely solve the problem for two of our cases, this is one place to begin.

We could also consider a more general problem by removing a subgraph \(H \) belonging to a different class of graphs.

Rather that limiting the size of stars to be a fixed value, we could consider decomposing a graph into stars of size \(t \) where \(t \) comes from some finite set of positive integers.

References