Title: Star Decompositions of the Complete Split Graph
Name: Adam Volk
Advisor: Atif Abueida, Ph.D.

Introduction
A graph is a discrete mathematical structure that consists of a set of vertices and a set of edges between pairs of vertices. A graph decomposition is a partitioning of the edges of a graph into disjoint sets in such a way that the induced subgraphs produced are isomorphic to each other. The graphs we focus on here are stars and complete split graphs (see below).

![A complete split graph as the join of a complete graph and independent set](image)

Special Cases
- **$m = n - 1$:** decomposable if and only if $t | m$
- **$t = 1$:** trivial
- **$t = 2$:** decomposable if and only if total number of edges is even [3]

Necessary Conditions
- If G can be decomposed into t-stars, then
 $$t \left(\binom{n-m}{2} + m(n-m) \right)$$

Casework and Results
- **$n - m < t$:** decomposable if and only if
 - $t \left(\binom{n-m}{2} \right)$
 - $n - m = t$: decomposable if and only if
 - t is odd and $m \geq \frac{t+1}{2}$
 - **$t < n - m < 2t$:** decomposable if
 - $t \left(\binom{n-m}{2} \right)$
 - t is odd, $t|m$, and $n - m = t + 1$
 - **$n - m \geq 2t$:** decomposable if
 - $t \left(\frac{(n-m)(n-m-1)}{2} \right)$ and $t|m(n-m)$
 - $t \left(\frac{n+m-1}{2} \right)$, or
 - $n - m$ is odd and $m \equiv -1 \pmod{t}$

Future work
Since we were unable to completely solve the problem for two of our cases, this is one place to begin.

We could also consider a more general problem by removing a subgraph H belonging to a different class of graphs.

Rather than limiting the size of stars to be a fixed value, we could consider decomposing a graph into stars of size t where t comes from some finite set of positive integers.

References