Tree Community Phylogenetic Diversity Varies with Topography in an Old-growth Appalachian Forest

Julia I. Chapman
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Recommended Citation
http://ecommons.udayton.edu/stander_posters/782

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Changes in Relative Abundance and Spatial Distribution of Dominant Overstory Taxa in an Old-growth Forest Over 30 Years
Julia I. Chapman and Dr. Ryan W. McEwan, Department of Biology

Background
- Deciduous forests of eastern North America are undergoing a major shift in tree species composition.
- Hardwood species, such as oak (Quercus sp.) and hickory (Carya sp.) are failing to regenerate.
- Mesophytic species, such as sugar maple (Acer saccharum) and American beech (Fagus grandifolia) are becoming more abundant.
- This “mesophication” process will have important economic and ecological ramifications.

Methods
- Study site: Big Everidge Hollow, a 52-ha old-growth forest in SE Kentucky.
- Woody stems ≥ 2.5 cm diameter at breast height (dbh) were measured in 79 circular 0.4 ha plots in 1979, 1989, 1999, and 2010.
- Relative abundance and frequency were calculated for dominant taxa in three size classes: small (2.5–10 cm dbh), medium (10–25 cm dbh), and large (< 25 cm dbh).
- Nonmetric Multidimensional Scaling (NMDS) was used to assess whether overstory community types became less distinct through time.

Results
- Figure 1. Temporal changes in relative abundance (stem density and basal area) of dominant taxa across all stem sizes and within each size class.
- Figure 2. Frequency of dominant taxa over time within small, medium and large size classes. Colored circles indicate the presence of at least one individual in the plot in the corresponding year.
- Figure 3. NMDS ordinations depicting dissimilarity among overstory community types for each size class in 1979 (top row) and 2010 (bottom row). Convex hulls (dotted lines) added to visualize overlap of community types. Community types were originally designated by Muller (1982).

Conclusions
- Mesophytic species were increasingly abundant through time and will likely replace oaks and hickories, which have a decreasing presence in recruitment layers. Mesophication in BEH is thought to be driven by regional-scale climate trends.
- Forest composition is predicted to become more homogenous across environmental gradients as mesophytic species alter light, nutrient, and moisture availability in a positive-feedback that promotes mesophytic species.
- Drastic environmental changes associated with timber harvest can accelerate recruitment of non-oak species; oak-to-maple transition may occur faster in second-growth forests than old-growth forests.

Acknowledgments: Eastern Kentucky University Division of Natural Resources, Rob Watts, Dr. Robert Muller, Kaitlin Perry, Amy Reese

References