Multi-Input Multi-Output Adaptive Control of 9-DOF Hyper-Redundant Robotic Arm

Xingsheng Xu
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Recommended Citation
http://ecommons.udayton.edu/stander_posters/788
Multi-Input Multi-Output (MIMO) Adaptive Control of 9-DOF Hyper-Redundant Robotic Arm

Xingsheng Xu, Advisor: Raúl Ordóñez
School of Electrical and Computer Engineering University of Dayton

Key Words
- Degree of freedom (DOF) and Fuzzy system
- Hyper-redundant robots (HRR)

Dynamic Model
- Manipulator Jacobian Matrix: An expression to connect angular velocity \(\omega^0 \), linear velocity \(v^0 \) of the end-effector and joint velocity \(\dot{q} \) as
 \[
 \begin{align*}
 \omega^0 &= J_\omega \dot{q}, \\
 v^0 &= J_v \dot{q},
 \end{align*}
 \]
 where \(J_\omega \) and \(J_v \) are \(3 \times n \) matrices.
- Euler-Lagrange Equation:
 \[
 \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = \tau_i, \quad i = 1, \ldots, n,
 \]
 where \(\tau_i \) is input torque of each motor and the Lagrangian \(L \) is given by
 \[
 L = K - P,
 \]
 where \(K \) is the kinetic energy and \(P \) is the potential energy.

MIMO Adaptive Control in Workspace

Simulation Results
- 9-DOF Arm Tracking and Disturbance Simulation

Objective
- Design both the kinematic and dynamic model of a 9-DOF hyper-redundant arm;
- Apply MIMO adaptive controllers to control the end-effector of the arm in work space.

Kinematic Model
- (a) Joint schematic
 (b) Frame assignment

Extra Constraints
- \(X \)
 \[
 \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = [\text{Jacobian}] \begin{bmatrix} \delta_1 \\ \vdots \\ \delta_n \end{bmatrix}
 \]
 More redundant!

Conclusion
- Take care of the system nonlinearity and uncertainty;
- Approximate the ideal controller online to the particular system;
- Adjust itself and try to track the reference again after having system disturbance.

Real 9-DOF Arm Platform
- (a) Home position 1
 (b) Home position 2