Design of an Opposed-piston, Opposed-stroke Diesel Engine for Utility Aircraft

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/915

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Design of an Opposed-piston, Opposed-stroke Diesel Engine for use in Utility Aircraft
Luke Kozal
Advisors: Dr. David Myszka, Dr. Andrew Murray, Paul Litke AFRL/RQTC

Purpose: Design an opposed-piston, opposed-stroke, two-stroke diesel engine with a takeoff power of 800hp at 3600rpm

Motivation
- Bridge the power and cost gap between turboprop engines and piston engines
- Desired specifications: 800hp at an engine speed of 3600rpm
- Historical Comparison – Junkers Jumo 207B
 - 1000hp, 16.6L, 1907lb, 250g/kWh
 - Below is the very similar 205 model

Why Opposed-Piston, Two-stroke (2S)
- Power density of 2S – leads to leaner combustion
- Lighter and simpler design with no camshafts or piston heads. This results in the engine being 12% cheaper, having 34% fewer parts, and being 32% lighter
- Leaner combustion – 9% better Fuel economy compared to 4S

Simulation Model
Recreated the literature model [1]. It was validated with the following Graphs. The recreated values are shown in yellow over the values from the literature itself.

Design Work
- Determined dimensions with the following equations
 - \(m_{ep} = \frac{P_{N_F}}{V_{dN}} \)
 - \(\bar{S}_p = 2LN \)
- New dimensions run through the literature model.

<table>
<thead>
<tr>
<th>Results</th>
<th>My Engine</th>
<th>Junkers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power [hp]</td>
<td>1223</td>
<td>1000</td>
</tr>
<tr>
<td>Weight [lb]</td>
<td>1413-2064</td>
<td>1907</td>
</tr>
<tr>
<td>Sfc [g/kWh]</td>
<td>155*</td>
<td>250</td>
</tr>
</tbody>
</table>

* Indicated value – will increase with additional losses

Supported by the University of Dayton Honors Program