MEMRISTOR-BASED NEURAL LEARNING FOR ADAPTIVE CONTROL SYSTEMS

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/985

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
MEMRISTOR-BASED NEURAL LEARNING FOR ADAPTIVE CONTROL SYSTEMS

Rasitha Fernando

Advisors: Dr. Tarek M. Taha & Dr. Raul Ordonez

Motivation

- Control algorithms are used in almost all mechanical and electrical systems for controlling movements and activities.
- Control algorithms are highly computationally intensive, requiring the use of high powered computers and this makes their use in mobile platforms (especially small robots) almost impossible.
- Memristor based circuits implement neural networks at high speeds, but at several orders of magnitude lower power than traditional computers.
- Control systems on memristor neural learning circuit is designed for achieving such highly computationally intensive processes at lower power.

Memristor Neural Network Implementation

\[DP_j = \sum_{i=1}^{n} x_i W_{ij} \]

\[y_j = f(DP_j) \]

Adaptive Control System

- Control energy (CE) of SLP is in 10^7 magnitude.
- 3 layer MLP has unacceptable spike.
- 4 layer MLP resolve that and has good values for MSE and CE.

OBSERVATION

- Deep neural networks are good for advanced control algorithms.
- Memristor based devices support lower power for advanced computations.