The computational analysis of the radial distribution function in a many body, Lennard Jones system

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
"The computational analysis of the radial distribution function in a many body, Lennard Jones system" (2017). Stander Symposium Posters. 1083.
https://ecommons.udayton.edu/stander_posters/1083

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
The Computational Analysis of the Radial Distribution Function in a Many Body, Lennard Jones System

Gregg Legters, Ivan Sudakov, Ph.D., Vikram Kuppa, Ph.D.

Introduction

- No analytical solution can be found for a stochastic, many bodied system.
- Modeling and computational evaluation is an increasingly facile and successful approach.

Model

- Argon, Lennard Jones Force
- Velocity Verlet in Python
- Periodic, Force Cutoff, Wall BC’s

Radial Distribution Function

Initial Solid Argon (Crystalline)

Liquid 1K

Gas 300K

B.C.’s Vs Temp. vs Size

A Periodic
B Cutoff
C Wall

A
B
C

1K
100K
200K

25
50
75

300K

100

Conclusions

- RDF converges $\rightarrow 1$ as expected.
- RDF varies strongly with T.
- Fast Development time w/ python.
- Liquid to Gas, but no FCC solid (!)

Challenges

- Initial Conditions extreme, Δt limit
- Size effect, physics simple.