The Effect of Porosity on Short Beam Shear Strength of Fiberglass Composites

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/1217

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Effect of Porosity On Shear Strength of Fiberglass Composites
Kyle A. Lach
Chemical & Materials Engineering Dept., University of Dayton

Abstract
The presence of porosity is a well known yet difficult to avoid defect in laminated composite materials. Excessive porosity can significantly reduce the mechanical properties of composite structures and is therefore a source of concern. In this study, methods of preparing fiberglass/epoxy composite panels were investigated with the goal of being able to control the amount of porosity in the final panel, e.g. some panels with low porosity, some with high porosity. The panels were then tested for short beam shear strength, which is a property that is typically influenced heavily by interlaminar porosity. Our results indicated that, for the material system tested, the strength values were reduced only when the amount of porosity achieved a very high level (>10%). This implies that a low level of porosity can be tolerated with this material system.

Objectives / Approach
In this study we investigated the effect of porosity on the mechanical properties of fiberglass composites. Panels with various degrees of porosity were fabricated using hand layup and an autoclave cure cycle at 5 psi, 45 psi, and 85 psi. Porosity was quantified through the use of ultrasonic C-scan nondestructive evaluation and photomicroscopy. The mechanical test used was short beam shear (ASTM D2344).

Materials

<table>
<thead>
<tr>
<th>Table 1. Fiberglass / epoxy prepreg properties (from vendor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber type</td>
</tr>
<tr>
<td>Fabric Weave Style</td>
</tr>
<tr>
<td>Weave Pattern</td>
</tr>
<tr>
<td>Yarn Description</td>
</tr>
<tr>
<td>Fill: ECDE 75 1/0</td>
</tr>
<tr>
<td>Fiber Areal Weight (FAW)</td>
</tr>
<tr>
<td>Fiber Specific Gravity</td>
</tr>
<tr>
<td>Resin content</td>
</tr>
<tr>
<td>Resin Specific Gravity</td>
</tr>
<tr>
<td>Resin T (Tg/C)</td>
</tr>
<tr>
<td>Prepreg Cured Thickness</td>
</tr>
<tr>
<td>Expected Fiber Volume Fraction</td>
</tr>
</tbody>
</table>

*The value of 1.21 was given by the resin manufacturer, but for this study we used an effective value of 1.26 to account for additional densification in a composite environment and with autoclave curing.

Results and Discussions
Nondestructive Evaluation (NDE)*

Visual high porosity area at the edge

Porosity Evaluation (top) photograph of 8 psi panel and (bottom) C-scan results for 5 psi panel, showing high level of porosity. The horizontal line in the middle is an air gap where the two sides of the already-cut panel were butted together for the test.

Fracture surface of SBS specimens taken from the center of 5 psi panel. Although there are some large voids, many of the interlaminar cracks do not propagate through these voids.

Conclusion
A hand lay-up and autoclave curing procedure was successfully implemented to produce fiberglass/epoxy panels with varying degrees of porosity. The differences in porosity were achieved by varying the pressure during the autoclave cure cycle. Although the C-scan results show a steady reduction in porosity with increased pressure, the short beam shear testing as well as the optical microscopy indicate that there was a significant change in porosity between the 5 psi and 45 psi cure cycles, while there was only a minor change in porosity between the 45 psi and 85 psi cure cycles. The 5 psi panel contained two distinct areas of high porosity, which showed differences in void morphology. Only the highest level of porosity resulted in a significant reduction in shear strength.

Future Work
1. Check for repeatability of porosity levels in 5 psi, 45 psi, and 85 psi panels
2. Compare porosity levels of additional panels fabricated at intermediate pressures including, but not limited to: 15 psi, 25 psi, 35 psi
3. Investigate effects of using different fabric styles, such as a plain weave

Faculty Advisors/Collaborators
Donald Klosterman, Ph.D.
Chemical & Materials Engineering Dept.
University of Dayton

Charles Browning, Ph.D.
Chemical & Materials Engineering Dept.
University of Dayton

Funding was provided by Skolkovo Institute of Science and Technology (Skoltech), Russia

*C-scan results by Dr. Ray Ko, University of Dayton Research Institute (UDRI)