Validating the Location and Tracking of a Human’s Center of Mass Using a Statically Equivalent Serial Chain

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
"Validating the Location and Tracking of a Human's Center of Mass Using a Statically Equivalent Serial Chain" (2018). Stander Symposium Posters. 1311.
https://ecommons.udayton.edu/stander_posters/1311

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Validating the Location and Tracking of a Human’s Center of Mass Using a Statically Equivalent Serial Chain
Luke Schepers
Advisors: Andrew Murray, Ph.D, David Perkins, Ph.D

Definition of SESC: The statically equivalent serial chain is comprised of 13 parameters. These parameters are determined by capturing poses and using the body segment length and position information, as well as the center of pressure reading, acquired from different poses. Given these 13 parameters, the SESC points directly at a person’s CoM.

Objectives
- Investigate accuracy and repeatability of calculating a human’s CoM using low cost equipment
- Determine if the S-Vector components converge
- Determine the optimal standard deviation/frame rate allowed when capturing poses
- Determine individual importance of S-Vector components and decide if any components can be eliminated

Methods

Force Plate Calibration
- 9 weight placements
- Locate WBB relative to the Kinect
- Matlab code aligns axes of Kinect and WBB

Node Based Statically Equivalent Serial Chain

S-Vector Convergence
- Determine number of captured poses required for the SESC values to converge, thus creating a reliable SESC

Standard Deviation Variation
- Determine the optimal number of frames, CoP standard deviation, and node location standard deviation for collecting accurate pose data.

Elimination of S-Vector Components
- Determine if individual or multiple S-Vector components can be eliminated from the model

Future Work
- Test more individuals of varying body types
- Investigate further the validity/practicality of the SESC method

References