A Smart Beta Concentrated Portfolio Model for the Information Technology Sector: An Empirical Analysis, 2009-2017

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
A Smart Beta Concentrated Portfolio Model For The Information Technology Sector: An Empirical Analysis, 2009-2017
Jacob Willmann, Graham Trueman, Jake Cogley
Dr. Robert Dean, Dr. Tony Caporale

- Study Purpose:
 Develop a smart beta portfolio weighting model for the Information Technology sector that can outperform the S&P 500 and its sector counterpart, XLK.

- Factor Weights
 - Sales Growth
 - Relative Price Change

- Test Sector: Information Technology (XLK)

- Portfolio Size
 - 10 Stocks
 - 20 Stocks

- Original Investment
 - $1,000,000 (10 stocks)
 - $2,000,000 (20 stocks)

- Analysis Period: 2009-2017

- Model Construction:
 - \[S_t = A_i + B_i(t) \]
 - \[W_{it} = B_i / \sum B_i \]
 - \[D_{it} = W_{it} \times (1,000,000/2,000,000) \]
 - \[\text{SHRS}_{it} = \text{D}_{it}/\text{P}_{it} \]
 - \[\text{MV}_{it+1} = \text{SHRS}_{it} \times \text{P}_{it+1} \]
 - \[\text{PV}_{t+1} = \sum \text{MV}_{it+1} \]
 - 2\text{nd} Iteration
 - \[\Delta \text{SHRS}_{it+1} = \text{SHRS}_{it+1} \times (\text{P}_{it+1}/\sum \text{P}_{it+1}/\sum \text{P}_{it}) \]

- Nomenclature:
 - \(S = \text{Revenue per Year} \)
 - \(t = \text{time (years)} \)
 - \(A, B = \text{equation parameters} \)
 - \(W = \text{stock weight} \)
 - \(D = \text{dollars invested} \)
 - \(\text{SHRS} = \text{shares held} \)
 - \(\Delta \text{SHRS} = \text{shares added} \)
 - \(\text{MV} = \text{market value} \)
 - \(\text{PV} = \text{portfolio value} \)
 - \(i = \text{ith firm} \)
 - \(\text{P}_{it+1}/\text{P}_{it} = \text{relative price change} \)

- Key Findings:
 - 10 and 20 stock portfolios outperform SPY, 2009-2017
 - 10 and 20 stock portfolios outperform XLK, 2009-2017
 - Risk/Reward favorable against SPY XLK
 - Rebound Reward favorable against SPY XLK
 - Cumulative years 2009-2010 and 2016-2017 show cumulative alpha of 51% and 129% respectively.
 - Cumulative alpha declines from 10-20 stock portfolio: tradeoff between concentration and diversification.
 - In 2011 and 2015, flat to down market years. The 10-20 stock portfolios outperform S&P and XLK.