Medical Imaging to Patient Specific Additively Manufactured Implant

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/1499

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Medical Imaging to Patient Specific Additively Manufactured Implant

Monica Yeager
Advisor: Dr. Amy Doll
Department of Electrical and Computer Engineering, University of Dayton

Rationale

• Due to an aging population and advancements in technology, the commercial market for 3D-printed joint replacements is expected to soar over the next decade.¹
• Millions of anthropometrically diverse people have knee and hip replacement surgeries annually, which are limited by a small number of standard sized cast molded implants.
• Personalized additively manufactured implants created from CT scan images would provide a personal fit and reduced surgery and recovery time.²
• Our goal is to demonstrate a prototype process for patient specific, additively manufactured hip implants made from DICOM images of human femur bone, leading to additional research on imaging of trabecular bone for biomimetic lattice development.

Methodology

• 400 anonymous DICOM images for both male and female femur bones were downloaded from the University of Iowa Visible Human Project CT Dataset.³
• Each set of DICOM images was imported into MATLAB using Image Processing Toolbox. Custom code was written to modify each data set. Thresholding, segmentation, and other techniques were used to isolate the femur bone from other organs and tissues to create a 3D solid body model (Figure 1).

![Figure 1: Image Processing in MATLAB](image)

(a) One CT scan slice (b) Segmented slice (c) Contour slice (d) 3D model

• The DICOM images were exported to 3D Slicer and optimized using Meshmixer to create a detailed 3D model of the femur bone and .STL file for 3D printing using a Formlabs Form 2 SLA 3D Printer with Photopolymer Resin (Figure 2).

![Figure 2: Image Optimization for 3D Printing in 3D Slicer](image)

(a) Segmented model (b) Print-Ready model (c) Added structure (d) Printer with model

• It is possible to make personalized 3D printed implants for patients using CT scans. 3D printed bones can also be used as robust surgical planning tools for surgeons, especially for specialized cases involving injury, disease, or abnormal anatomy. We can implement Machine Learning of DICOM images to model specific demographics such as age and gender.
• Percentage and density of trabecular bone appears to vary with gender.
• Next steps include the design of a custom hip implant in biocompatible Titanium 64 with gender-specific biomimetic viscoelastic lattice structures, porosity, and surface finishes to promote boney in-growth and strength.

Discussion and Conclusions

Table 1: Measurements

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femur Bone Cross-Section Radius</td>
<td>15.3mm</td>
<td>17.15mm</td>
</tr>
<tr>
<td>Femur Head Cross-Section Radius</td>
<td>25.1mm</td>
<td>26.7mm</td>
</tr>
<tr>
<td>Build Volume</td>
<td>175.45mL</td>
<td>211.97mL</td>
</tr>
</tbody>
</table>

Table 5: Trabecular bone density

Results

Figure 3: 3D solid body model and printed cross-section of femur bone

Figure 4: 3D printed femur (Male)

Figure 5: Trabecular bone density

Acknowledgements and References

Portions of this work were funded through the University of Dayton Summer Undergraduate Research Experience Program. Some software and printing work done by Dimitri Papazoglou. Thanks to Dr. Vamsy Chodavarapu for use of Formlabs Form 2 Printer.