
Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/1508

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.

Brendan McDonnell, Eric Weber
Dr. Robert Dean, Dr. Tony Caporale

- **Study Purpose**
 - Determine if a 2 factor concentrated portfolio weighting model for the healthcare sector can outperform the S&P 500 and its sector counter part, XLV.

- **Factor Weights**
 - Sales Growth
 - Relative Price Change

- **Test Sector**
 - Healthcare (XLV)

- **Portfolio Sizes**
 - 10 Stocks
 - 20 Stocks

- **Investment**
 - $1,000,000 (10 Stocks)
 - $2,000,000 (20 Stocks)

- **Analysis Period → 2009-2017**

- **Model Construction**
 - \(S_i(t) = A_i + B_i(T) \)
 - \(W_{it} = \frac{B_i}{\sum B_i} \)
 - \(D_{it} = W_{it} \times (1 \text{ MM or } 2 \text{ MM}) \)
 - \(\text{SHRS}_{it} = D_{it} / \text{Pt} \)
 - \(\text{MV}(t+1) = \text{SHRS}_i(t) \times \text{P}(t+1) \)
 - \(\text{PV}(t+1) = \sum \text{MV}(t+1) \)
 - \(\Delta \text{SHRS}_i(t+1) = \text{SHRS}_i(t+1) \times \left(\frac{\text{P}(t+1)}{\text{Pt}} / \sum \left(\frac{\text{P}(t+1)}{\text{Pt}} \right) \right) \)
 - \(\text{SHRS}_i(t+1) = \text{SHRS}_i(t) + \Delta \text{SHRS}_i(t+1) \)
 - \(\text{MV}(t+2) = \text{SHRS}_i(t+1) \times \text{P}(t+2) \)
 - \(\text{PV}(t+2) = \sum \text{MV}(t+2) \)

- **Nomenclature**
 - \(i = \text{ith} \)
 - \(t = \text{time in years} \)
 - \(s = \text{Revenue per year} \)
 - \(A, B = \text{equation parameters} \)
 - \(D = \text{Dollars Invested} \)
 - \(W = \text{stock weight} \)
 - \(\text{SHRS} = \text{Shares Held} \)
 - \(P = \text{Price per Share} \)
 - \(\text{MV} = \text{Market Value} \)
 - \(\text{PV} = \text{Portfolio Value} \)
 - \(\Delta \text{SHRS} = \text{Shares Added} \)
 - \(\frac{\text{P}(t+1)}{\text{Pt}} = \text{Relative Price Change} \)

Findings
- **10 stock portfolio outperforms SPY:** Alpha = 1068.55%
- **20 stock portfolio outperforms SPY:** Alpha = 900.65%
- **10 stock portfolio outperforms XLV:** Alpha = 1073.02%
- **20 stock portfolio outperforms XLV:** Alpha = 905.12%
- Increasing size of portfolio (increased diversification) slightly reduces alpha
- Increasing size of portfolio reduces cumulative returns
- 10 stock portfolio cumulative return was 1308.89% while 20 stock portfolio cumulative return was 1140.99%
- 10-20 Stock portfolios outperform SPY and XLV in 2011 and 2015, flat to down-market years