Design of a Jet-Powered Remote Control Aircraft for use at an Intercollegiate Competition

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
"Design of a Jet-Powered Remote Control Aircraft for use at an Intercollegiate Competition" (2019).
Standar Symposium Posters. 1584.
https://ecommons.udayton.edu/stander_posters/1584

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlagen1@udayton.edu.
Design and Construction of a Jet-Powered Remote Control Aircraft
Samuel Barnhart - Aero Design Build Fly Team
Department of Mechanical and Aerospace Engineering
University of Dayton

Mission
- Launch from 6 x 6 ft area
- Create less than 72 dBA of sound during flight
- Launch, identify target, and land in under 5 minutes
- Top speed of 200 mph
- 15nm range and followed by a 10 min loiter
- Build for under $5000

Initial Sizing
- Max Take Off Weight determined by T/W of 1.5 and engine max thrust of 19 lbs
- Wing area determined from historical average wing loading of 3.2 lbs/ft^2
- Fuel payload determined from engine tests
- Tail sizing done using historical tail volume coefficients
- Modeled Using OpenVSP design software
- Designed to be capable of hand launched takeoff
- Symmetrical NACA 0018 airfoil used for tail
 - Thick enough to house servos
- Cambered NACA 2412 used for wing to produce necessary lift

Weight Buildup

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload</td>
<td>1.12</td>
</tr>
<tr>
<td>Structure</td>
<td>3.58</td>
</tr>
<tr>
<td>Propulsion</td>
<td>23.2%</td>
</tr>
<tr>
<td>Powerplant</td>
<td>7.3%</td>
</tr>
<tr>
<td>Avionics/Electronics</td>
<td>7.1%</td>
</tr>
<tr>
<td>Camera and Gimbal</td>
<td>0.44</td>
</tr>
<tr>
<td>Fuel System Components</td>
<td>0.8%</td>
</tr>
<tr>
<td>Fuselage</td>
<td>2.68</td>
</tr>
<tr>
<td>Engine/mount</td>
<td>2.97</td>
</tr>
<tr>
<td>Camera/Gimbal</td>
<td>0.44</td>
</tr>
<tr>
<td>Thrust Tube</td>
<td>0.73</td>
</tr>
<tr>
<td>Servos (ailerons)</td>
<td>0.31</td>
</tr>
<tr>
<td>Servo H-Tail</td>
<td>0.16</td>
</tr>
<tr>
<td>Servo V-Tail</td>
<td>0.16</td>
</tr>
<tr>
<td>Electronics</td>
<td>0.25</td>
</tr>
<tr>
<td>Avionics Battery</td>
<td>0.22</td>
</tr>
<tr>
<td>Engine Battery</td>
<td>0.25</td>
</tr>
<tr>
<td>Fuel Tank</td>
<td>0.47</td>
</tr>
<tr>
<td>Fuel System Comp.</td>
<td>0.10</td>
</tr>
<tr>
<td>Total Weight (lbs)</td>
<td>14.57</td>
</tr>
</tbody>
</table>

Structural Design
- Carbon Fiber Fuselage Skin
- Flame Tube
- Rudder
- Elevator
- Engine
- Control Surface Servos
- Camera and Gimbal
- Leading Edge Caps
- Ribs
- Spars
- Aileron
- Fuel Tank
- Bulkheads
- Carbon fiber rods (spars) and balsa wood (ribs, leading edge caps, trailing edge devices)
- Skin of wings are made of fiberglass composites with carbon fiber strips
- Designed and sized using Autodesk Fusion 360

CG Location/Static Margin
- Full Fuel CG: 25.69%
- Zero Fuel CG: 12.08%
- Neutral Point
- Total Weight w/ Fuel (lbs): 14.57
- T/W Ratio w/ Full Fuel: 1.33

Jet Engine Testing
- Experimented tested the engine to determine thrust specific fuel consumption curve and choose high efficiency operating points of the engine for the flight
- Used data to calculate fuel needed for duration of the endurance mission
- Led to sizing of fuel tank

Manufacturing Process
- Fuselage mold was constructed with 3D printed material
 - 4 layers of carbon fiber were laid up in mold to create skin
 - Aircraft plywood used for bulkheads and internal support in fuselage
- Wings were built with carbon fiber rods (spars) and balsa wood (ribs, leading edge caps, trailing edge devices)
- Skin of wings are made of fiberglass composites with carbon fiber strips
- Detailed component design done in Autodesk Fusion 360

Future Work
- Tests for endurance and range
- Implement autopilot for extending applications and functionality
- Construct a better fuel system (layout) to shrink Static Margin Range
- Use knowledge of jet engine propulsion for future projects
- Build upon knowledge of experimenting in future designs and studies by the team