Modulation of Listeria monocytogenes Carbon Metabolism by Short Chain Fatty Acids

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/1590

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Modulation of *Listeria monocytogenes* Carbon Metabolism by Short Chain Fatty Acids

Diksha Bedi¹, Erica Rinehart¹, Dr. Jeremy Erb², and Dr. Yvonne Sun¹

Department of Biology ¹, Department of Chemistry ², University of Dayton, 300 College Park, Dayton, OH 45469

Research Objective: Understand how physiologically relevant fermentation acids interfere with *Listeria’s* central carbon metabolic pathway

Background

- *Listeria monocytogenes* is an intracellular bacterial pathogen
- Carbon metabolism in the presence of physiologically relevant SCFAs is still being investigated
- SCFAs in the gut have been linked to diseases: thrush, diabetes, and immune regulation of T cells
- Immunologically compromised individuals are more susceptible to *Listeria* infections

Research Methods

I. Acetoin Assay

To determine how propionate alters carbon metabolism, we performed a cell suspension assay where aerobically grown bacteria were harvested, concentrated, and resuspended in fresh media supplemented with propionate and/or glucose:

<table>
<thead>
<tr>
<th>Propionate</th>
<th>Glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No supplementation</td>
</tr>
<tr>
<td>2</td>
<td>25 mM</td>
</tr>
<tr>
<td>3</td>
<td>50 mM</td>
</tr>
<tr>
<td>4</td>
<td>100 mM</td>
</tr>
<tr>
<td>5</td>
<td>25 mM</td>
</tr>
<tr>
<td>6</td>
<td>No supplementation</td>
</tr>
<tr>
<td>Acetate</td>
<td>25.5 mM</td>
</tr>
<tr>
<td>Propionate</td>
<td>2.25 mM</td>
</tr>
<tr>
<td>Butyrate</td>
<td>2.25 mM</td>
</tr>
</tbody>
</table>

II. LDH Activity in Response to SCFAs

- Acetoin production increased with propionate supplementation in a dose-dependent manner
- This increase in acetoin production was not a result of stimulating glucose oxidation
- Increased SCFA concentration also increases acetoin production, but the response is dose independent

III. ΔmenB mutant

These mutants cannot synthesize menaquinone, an important component of the ETC. Thus, quantifying their LDH activity can give insight into the mechanisms the bacteria use in switching from aerobic respiration to anaerobic fermentation.

Conclusions and Future Work

I. *Listeria* is capable of modifying its central carbon metabolism to produce more acetoin in response to propionate, likely by incorporating propionate into its carbon metabolism

II. Anaerobic LDH activity was inhibited with the addition of SCFAs in a dose dependent manner, perhaps due to enzymatic saturation or pH conditions

III. The absence of menaquinones inhibits *Listeria’s* anaerobic LDH activity

Future work: ¹³C-NMR analysis of metabolites and experimental conditions with butyrate, acetate, and propionate alone.

Acknowledgments

I would like to thank Dr. Sun, my lab mentor, for all her hands on work in helping me prepare and execute the experiments. Her hard work has given me an invaluable amount of practical wisdom as I move forward to pursue a career in medicine. Additionally, I would also like to thank Dr. Erb for all of his help in ensuring I was properly trained to use the ¹³C-NMR machine. His time towards helping me understand the chemistry behind my work has been vital for my thesis. Lastly, I would like to thank the University Honors program and Dean’s Summer Scholarship for providing me with the monetary and experiential support to write my honors thesis.