Distance Between Graphs

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
"Distance Between Graphs" (2019). Stander Symposium Posters. 1648.
https://ecommons.udayton.edu/stander_posters/1648

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Distance Between Graphs
Preston Boorsma
Advisor: Dr. Aparna Higgins

Introduction
Two graphs G and H are said to be \textbf{isomorphic} if there exists a bijection ϕ from the vertex set of G to the vertex set of H such that uv is an edge in G if and only if $\phi(u)\phi(v)$ is an edge in H. Isomorphic graphs can be relabeled and redrawn to look identical.

A graph G can be \textbf{rotated into} a graph H if, for vertices u,v,w in G, $G - uv + uw$ is isomorphic to H. The \textbf{rotation distance} $d(G,H)$ between G and H is the smallest number of graphs needed to transform G into H by rotations. For example, $d(A,B) = 1$ and $d(A,C) = 2$.

A \textbf{greatest common subgraph} of graphs G and H is a graph of maximum size that is isomorphic to edge-induced subgraphs of both G and H.

A \textbf{rotation distance graph} has a vertex set made up of graphs where two vertices are adjacent if their rotation distance is 1.

Theorem
Let G and H be graphs of order n and size m, and let F be a greatest common subgraph of G and H with size s. Then $d(G,H) \leq 2(m - s)$.

Why? If G and H are not isomorphic, then there exists an edge uv in H but not in G and an edge xy in G but not in H. We can construct a graph $H' = G - xy + uv$ so that $d(G,H') \leq 2$, and H and H' have $s + 1$ edges in common. Repeating this process $m - s$ times, we get $d(G,H) \leq 2(m - s)$.

The \textbf{bound} $2(m - s)$ is sharp. Consider graphs A and C to the left. The graph D (see below) is a greatest common subgraph of A and C with size 5. Our theorem states that $d(A,C) \leq 2(6 - 5) = 2$, and $d(A,C) = 2$.

Existence of Distances
For each positive integer k, there exist two graphs G and H such that $d(G,H) = k$. For any given k, construct H as shown below, and let $G = P_{k+3}$.

Rotation Distance Graphs
Every complete graph K_n is a rotation distance graph. For example, the graph K_3 is a rotation distance graph of graphs G_1, G_2, G_3 below for $n = 3$. Similar graphs can be constructed for any n.

References
\begin{itemize}
\end{itemize}