Moving towards tuning of ankle-foot orthoses: The influence of carbon and plastic AFOs for individuals with Multiple Sclerosis

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/1687

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Moving Towards Tuning of Ankle-Foot Orthoses (AFOs): The Influence of Carbon and Plastic AFOs for Individuals with Multiple Sclerosis

Sarah Hollis Advisor: Dr. Kimberly Bigelow

Research Objective: To determine the immediate effects of plastic and carbon ankle foot orthoses (AFOs) on individuals with multiple sclerosis (MS) leading to follow up work investigating techniques and advantages of tuning AFOs in the MS population.

Overall Hypothesis: Wearing an AFO can help improve balance, fatigue, and gait patterns for individuals with MS. However, the use of AFOs could hinder certain dynamic movements necessary for everyday tasks. Tuning could mitigate the negative effects AFOs have by customizing the brace to the individual’s needs.

AFOs and Multiple Sclerosis

- Multiple Sclerosis (MS) is an autoimmune disease where the body’s immune system attacks the myelin that surrounds the nerves within the central nervous system (CNS) [1].
- Carbon fiber and plastic AFOs are commonly prescribed to individuals with MS to address gait, balance, and fatigue deficits.

Our New Focus: AFO Tuning

- In the previous study, all were off-the-shelf with only slight adjustments per person to ensure fit and alleviate any pain from pinching.
- Participants in a new study will be undergoing a tuning process with a new or existing AFO.
- Tuning is believed to help optimize the effectiveness of AFOs.
- AFO tuning techniques include:
 - Adding wedges under the heel to increase shank-to-vertical angle (SVA) (Figure 6)
 - Adjusting the footplate stiffness
- However, there are no guidelines or tools to help in prescription

Results and Discussion

Static Balance:

Although not statistically significant, trends emerged showing AFOs aided in static balancing tasks (Figure 3).

Gait: Gait speed data showed varying results between each participant (Figure 4).

Balance: Quiet Standing Posturography and Limits of Stability

Gait Endurance: 6 minute walk test

Methodology

Gait Analysis: Passive reflective motion capture with Vicon camera system and Bertec in-floor force plates

Balance: Quiet Standing Posturography

Gait Analysis:

- Motion capture uses location and relative position to map the markers through the volume
- Connected into a skeleton (Figure 9), these track segments and allow for creation of a digital avatar
- Shank-to-vertical angle (SVA) is calculated at midstance
 - When proximal heel marker of opposite limb passes proximal heel marker of reference limb
- Evaluation: Ensure SVA achieves an angle of 10 – 12° during midstance

Post-Processing and Analysis

- Analysis is used to evaluate effectiveness of tuning process
 - SVA of 10 – 12° during midstance
 - Proper alignment of ground reaction forces (GRF) (Figure 10)
- Goal is to accommodate for contractures and promote tibial advancement through the gait cycle
- We are currently in the data collection process.
 - So far one subject has completed the testing

Acknowledgements and References

- Dr. Kimberly Bigelow – Advisor (Engineering Wellness through Biomechanics Lab)
- Dr. Kurt Jackson – Neurological Coordinator (Department of Physical Therapy)
- Mark Horowitz – Clinical Director (Hangar Clinic)
- Allard USA – provided the AFOs used in the first study
- Christina Cooper – Physical Therapist (Kettering Neurorehab and Balance Center)

References: