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Introduction

Let ! be a graph with vertex set "(!) and edge set 
#(!). The line graph of !, denoted $(!), is the graph 
whose vertex set is #(!) and in which two vertices are 
adjacent if they are adjacent in !. The total graph of 
!, denoted %(!), is the graph whose vertex set is 
"(!)∪#(!) and in which two vertices are adjacent if 
they are adjacent or incident in !. Note that ! and 
$ ! are both subgraphs of %(!), and for each vertex 
'( ∈ " $ ! , where ', ( ∈ "(!), the edges {', '(}
and (, '( exist in %(!).

! $ ! %(!)
Example graph with its line graph and total graph

------------------------------------------------------------------
What properties of a graph / are preserved under 
the line graph and total graph operators?
------------------------------------------------------------------

Regular Graphs
A graph ! is 0-regular if each of its vertices has 
degree 0.

It is a simple argument to show that if ! is 0-regular, 
then $ ! is 2 0 − 1 -regular and %(!) is 20-regular.
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Hamiltonian and Eulerian 
Graphs

A graph ! is Hamiltonian if it contains a cycle of 
length 4, where 4 is the number of vertices in !. A 
graph ! is Eulerian if it contains a circuit that visits 
every edge exactly once.

A Hamiltonian Graph      An Eulerian Graph

Theorem (Behzad and Chartrand, 1966). If a graph !
is Hamiltonian, then %(!) is Hamiltonian.

Theorem (Behzad and Chartrand, 1966). If a graph !
is Eulerian, then %(!) is Eulerian and %(!) is 
Hamiltonian.
-------------------------------------------------------------------

Pancyclic Graphs
A graph ! is pancyclic if it contains cycles of all possible 
lengths from three to 4, where 4 is the number of vertices 
in !.

A pancyclic graph   Not a pancyclic graph
(missing a 4-cycle)

Lemma (Hoover, 1991). If ! is pancyclic, then $(!) is 
pancyclic.

Lemma. If ! is pancyclic, then " ! ≤ " $ ! .

Theorem (New)
If ! is pancyclic, then %(!) is pancyclic. 

“Proof.” Let ! be a pancyclic graph with 4
vertices and 6 edges. For each 7 ∈
{3, 4, … , |"(%(!)|}, we find a 7-cycle in %(!). 
For any 7 ≤ 6, a 7-cycle can be found in the 
pancyclic subgraph $(!). 

For 7 ≥ 6 + 3, a 7-cycle can be constructed by 
“breaking” a Hamiltonian cycle in $(!) in order 
to pick up a 7 −6 -cycle in !. In doing so, we 
remove an edge from both the Hamiltonian 6-
cycle and the 7 −6 -cycle, and we gain two 
edges by traversing to and from the 7 −6 -
cycle in ! through subsequent vertices in the 
Hamiltonian cycle in $(!). This is possible since 
! and $(!) are pancyclic and by application of 
the definition of total graph. For 7 = 6 + 1 or 
7 = 6 + 2, a 7-cycle can similarly be 
constructed by “breaking” a Hamiltonian cycle in 
$(!) in order to pick up an extra one or two 
edges. Construction of a 7 = (6 + 2)-cycle is 
illustrated below. The choice of (?(@ is arbitrary. 

Construction of 7 = (6 + 2)-cycle in %(!)
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