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ABSTRACT 

Feedforward/Feedback Forging Process Control Using Neural 
Networks 

Name: Hammad, Ibrahim 

University of Dayton, 2001 

Advisor: Dr. Reza Kashani 

The main reason for real time control in any system is to reduce the sensitivity of 

that system to process noise (disturbance) and uncertainties in the model used to 

synthesize the controller. If the process has a reasonably high-fidelity model and 

no disturbance or parameter variation exists, then an open-loop controller will 

adequately control the process. Although open-loop control is the first logical step 

toward controlling any process, including a complicated and unfriendly process 

such as forging, feedback control is needed to improve the effectiveness. The 

main hurdle for closing the feedback loop in forming processes, including forging, 

is finding the right sensing mechanism. 

Our approach to the control of forging process centers around having a 

measurable process attribute follow a reference input. In other words, the control  



  

task will be that of command following which also rejects process disturbances. | 

The non-trivial nature of the command (reference input) profile indicates the 

simple, non model-based linear classical feedback controllers such as P or PI will 

not be able to accomplish the job, successfully, and model-based controllers 

should be pursued. Considering the complexity and nonlinear nature of forging, 

the only modeling technique that can adequately describe the process is FEM. 

FE models cannot be used in real-time applications such as controls, but these 

models can be emulated by an artificial neural network (ANN) and used in real 

time applications, which is what has been done in this work. 

Using an ANN model of a forging application, an_ effective 

feedforward/feedback control scheme is developed for a forging process. 

Numerical simulations indicate that such controller poses high performance in 

terms of command following and disturbance rejection. Moreover, it is fairly 

robust to model uncertainties.
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CHAPTER | 

introduction 

1.1 Problem Statement 

Like most metal forming processes, in order to bring the forging process to the 

desired stage, the knowledge of process states is needed [1]. In the absence of 

having direct measurement of the desired outputs, (i.e., microstructure 

information), process models mapping control actions to process state changes 

are highly beneficial. 

The focus of forging process control research in the past few years has 

been to maintain the processing variables such as strain, strain rate, and 

temperature within the acceptable ‘processing window’ by off-line design of the 

input parameters [6]. Frequently, isothermal conditions are assumed for a 

specified geometry of the billet and die. The process is done by off-line synthesis 

of the ram velocity trajectory to obtain desired properties in the forged part using 

the available data for billet material. This method combines the use of 

constitutive equations and the dissipation of applied power within the deforming 

material to evaluate the desired average strain rate trajectory in the deforming 

workpiece [10].
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Figure1.1 Open and close-loop forging process 

Selection of process parameters in forging is viewed as a three stage task 

shown in Figure 1(solid lines). The most desirable loop to be closed in any 

feedback system is the one containing all the elements involved in the process. 

In the system shown in Figure 1.1 closing such a loop requires the sensing of the 

process variable, the output of the last block, which corresponds to the reference 

input, i.e., the input to the first block. In forging, measurement of the workpiece 

microstructure attributes, (e.g. average grain size) allows for closing such a loop 

(dashed lines in Figure 1.1). Considering the inconvenience, even impracticality, 

of doing such measurement another related parameter should be sensed for 

feedback control. 

In the dissertation work the emphasis will be on controlling the process 

itself rather than the machine (forging press). A finite element method was used



      
    
    

  

   
   
   
   
   
   
   
   
    

    

      

to model the forging process, and the data was collected from this model to 

design a neural network feedforward controller. To improve disturbance rejection 

attributes of this controller a feedback controller is also added to the control 

system. Strain rate at a critical location of the workpiece is used as the feedback 

sensory data. 

1.2 Background 

1.2.1 Forging 

Forging denotes a family of processes by which plastic deformation of workpiece 

is carried out by compressive forces. Forging, is one of the oldest metalworking 

operations known, dating back to 5000 B.C., and it is used to making parts of 

widely varying sizes and shapes from a variety of metals [2]. 

The main objective of any metal! forming, including forging is to obtain a final 

product with a desired final shape, better mechanical properties and finer 

microstructure. Mainly there are two design objectives in the forging process 

[8,7]:   e To produce a final product with geometrical accuracy. 

e To achieve high quality mechanical properties and microstructure. 

Forging is distinguished from other fabrication techniques such as casting, 

machining, or welding by the production of large strains distributed throughout



  

the workpiece [9]. As a result of these strains, microstructural changes occur 

which give the final product desirable mechanical properties. 

The mechanism of a typical forging process is shown in Figure 1.2. The 

workpiece or the billet is deformed by applying a swift load on the top die while 

the bottom die is stationary. 

Before machines were introduced to the forging industries, hand forging 

was used using hand sledges. The chief difference between hand forging and 

machine forging is that in the latter technique, various types of machine-powered 

hammers or presses are used instead of hand sledges. 
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Figure1.2 Forging press schematic 

These machines enable the operator to strike heavy blows with great rapidity and 

thus, produce forgings of large size and high quality as swiftly as required by 

modem production-line methods. Another advantage of machine forging is that



  

the heavier the blows struck during forging, the greater the improvement in the 

quality of metallic structure [5]. Fine grain size in the forging, which is particularly 

desirable for maximum impact resistance, is obtained by working the entire 

piece. With large, hand-forged metal, only the surface is deformed, whereas the 

machine hammer or press will deform the metal throughout the entire piece 

[11,10]. 

As mentioned above one of the design objectives of forging is to obtain a 

desirable microstructure, which is affected by three parameters: effective strain- 

rate, effective strain, and temperature. This dissertation aims at improving the 

material microstructure, which results in improving the final product mechanical 

properties. 

1.2.2 Artificial Neural Networks 

There is no universally accepted definition of an NN; however, most people in the 

field would agree that an NN is a network of many simple processors (units), 

each possibly having a small amount of local memory [32]. The units are 

connected by communication channels (connection), which usually carry numeric 

(as opposed to symbolic) data, encoded by various means. The units operate 

only on their local data and on the inputs they receive via the connections. 

Some NNs are models of biological neural networks and some are not, but 

historically, much of the inspiration for the field of NNs came from the desire to  



  

produce artificial systems capable of sophisticated, perhaps "intelligent", 

computations similar to those that the human brain routinely performs, and 

thereby possibly to enhance our understanding of the human brain [34]. 

Most NNs have some sort of "training" rule whereby the weights of 

connections are adjusted on the basis of data. In other words, NNs "leam” from 

examples (as children leam to recognize dogs from examples of dogs) and 

exhibit some capability for generalization beyond the training data; furthermore, 

NNs normally have great potential for parallelism, since the computations of the 

components are largely independent of each other [37,38]. Some people regard 

massive parallelism and high connectivity to be defining characteristics of NNs, 

but such requirements rule out various simple models, such as simple linear 

regression (a minimal feedforward net with only two units plus bias), which are 

usefully regarded as special cases of NNs. 

The basic element in a biological model of the human brain is called a neuron. 

For each neuron, the number of connections can be up 10*, and the human brain 

is estimated to have about 10'' neurons [35]. In a biological neuron, a neuron 

receives excitatory input that is sufficiently large compared with its inhibitory 

input. It sends a spike of electrical activity down its axon. Learming occurs by 

changing the effectiveness of the synapses so that the influence of one neuron 

on another changes [45]. A simple drawing of a biological neuron is shown in 

Figure 1.3
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Figure 1.3 A simplified model of a biological neuron 

A simplified mathematical model can be extracted from a biological neuron 

by first trying to deduce the essential features of neurons and _ their 

interconnections. Then a computer can be programmed to simulate these 

features; however because the knowledge of neurons is incomplete and our 

computing power is limited, the models are necessarily gross idealizations of real 

networks of neurons. Figure 1.4 shows the connection between the biological 

neuron model and the mathematical model.
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Figure 1.4 Combined neuron model 

1.3 Scope 

The emphasis of this dissertation work is on improving the forged parts 

microstructure by controlling the forging process. This was done, by having a 

more reliable measurable attribute of the process, follow a reference input 

corresponding to a desirable microstructure. Strain rate at a critical location of the 

part is selected as that attribute. 

The nonlinear deformation model (i.e. finite element model) can be 

described by a neural network. Based on this modeling approach a neural 

network model was designed that maps the ram velocity profile to the workpiece 

strain rate. 

In summary the following tasks were achieved in this dissertation work: 

e Finite element mode! was developed of the forging process using ANSYS. 

e The finite element model was verified by running experiments using the 

Instron material testing machine.  



  

  

e The neural networks were identified to emulate the forging process and its 

inverse. 

e A second order hardware system resembling the forging press was made 

and controlled using neural networks to demonstrate the capability of the 

neural networks for controlling such nonlinear systems. 

1.4 Dissertation outline 

The outline of this dissertation is as follows: Chapter 2 describes the forging 

process in general, forging of titanium alloys, and method of stress analysis. 

Chapter 3 presents the concept of neural networks including a brief history 

of neural networks, backpropagation training method and multiplayer neural 

network (MNN). Section 3.10 discusses in details the modeling of the forging 

process (plant) using NN. 

Chapter 4 presents the implementation of neural networks analytically and 

experimentally. In this chapter a second order hardware system resembling the 

forging press, was made and controlled using neural networks. This exercise 

demonstrated the capability of the neural networks for controlling such nonlinear 

system. 

Chapter 5 illustrates the feedforward/feedback control scheme. A 

feedforward controller has been developed using the inverse modeling technique 

by NN. Moreover feedback control scheme was implemented using a PI 

controller to correct the error due to model uncertainty and disturbances.



  

  

In Chapter 6 a summary of the work accomplished and suggestions of 

future work are discussed. 
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Chapter Il 

Forging 

2.1 Introduction 

in earlier days, forging was the process of shaping metal by heating and 

hammering. Today, metal is not always heated for forging, and the work may be 

perform by several types of heavy machines, which apply impact or squeeze 

pressure with swift precision. Forging, in its simplest forms, is a batch process 

from the mechanical and frictional point of view. Steady state conditions are 

never achieved, and the lubricant is always exposed to pressure- temperature- 

velocity combination that changes continuously while a given workpiece is 

deformed [12,13]. Practical forging operations encompass a great variety of 

deformation modes. They are subdivided into open-die and closed-die forging 

processes. 

2.2 Definition 

Forging could be defined as the process of giving metal increased utility by 

shaping it, refining it, and improving its mechanical properties through controlled 

plastic deformation under impact pressure [14]. In open die forging, a workpiece 

is formed between two die faces. It is free to deform in two other directions. The 

simple upsetting of a short cylindrical workpiece is important in practice and is 

used in this dissertation work. 
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2.3 Advantages of forging 

In light of increasingly rapid changes in modem metalworking and manufacturing 

techniques, a review of the fundamental advantages of forged product is 

appropriate for several reasons [15,16]: 

Forged components have made possible many designs, which 

accommodate the higher load and greater stress of today’s high-speed 

world. 

With new technology, “unforgeable” materials have become in the range 

of forgeable materials. 

Finally, forged products have become more attractive than ever before 

because of extreme reliability and closer tolerance capabilities. 

The advantages of forging can be summarized by the following: 

High strength: With modern technology, to develop the absolute maximum 

strength potential of a particular material in the forging process with a 

minimum in variation of properties from piece to piece is possible; 

furthermore, forgings are not subjected to change in state or volume 

during the process as are castings during solidification [17]. 

Structural integrity: The degree of structural reliability achieved is 

unexcelled by any other metalworking process. Forging assures the 

elimination of the integral gas pockets or voids, which could cause 

unexpected failure of component under stress or impact (18, 19]. 
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2.4 Open-die Forging 

Open-die forging is the simplest form of forging, where a solid cylindrical 

workpiece is compressed between two flat dies and reducing its height by 

applying pressure, this technique is also known as upsetting, is shown in 

Figure.1a. 

  

[ 

Workpiece— 

  
  

  
  

  

              
  

  
  

  
  

  
  

  

ri   

        

[ 4 
    

Figure 2.1 (a) Ideal deformation of a solid cylindrical specimen compressed 
between flat frictionless dies (upsetting). (b) Deformation in upsetting with friction 

at the die workepiece interface. 

Figure 1(a) shows the deformation of a solid cylinder under ideal conditions. 

Because the volume of the cylinder is constant, any reduction in height increases 

the diameter of the cylinder.  



  

  

The degree of deformation to which the material is subjected to is defined 

as strain. For tension or compression, the engineering strain is defined as 

  

ho 7 h, 
ea, = 2.1 1 h, (2.1) 

The true strain e can be defined as 

ral / 
€= |— =In(—) (2.2) 

Io / Io 

where / is the original height of the specimen and /p is the final height of the 

specimen (after compression) . Using Equation 2 the true strain for the 

compressed cylinder is 

—= In) (2.3) 

— =“ = (2.4) 

where v is the instantaneous velocity, h and ho are the instantaneous initial and 

final heights of the specimen, respectively. 

The true strain rate ¢ increases rapidly as the height of the specimen 

approaches zero. The specimen in Figure 1b develops a barrel shape. The barrel 
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shape is caused by the frictional forces at the die-workpiece interface, that 

oppose the outward flow of the material at these interfaces [20]. Barreling also 

occurs in upsetting hot workpieces between cool dies. The material at the 

surface and near the interfaces cools rapidly while the rest of the specimen is 

relatively hot. Because the strength of the material decreases with temperature, 

the ends of the specimen show a greater resistance to deformation than the 

center. 

2.5 Methods of Stress Analysis 

a) Slab method: This method is considered to be one of the simplest methods 

of analyzing the stresses and loads in forging. Basically, to apply this method, a 

selection of an element in the workpiece and identification of all normal and 

frictional stresses acting on the element are required [12,22]. In this dissertation 

work, a solid cylindrical workpiece has been used, so it is appropriate at this point 

to shed some light on the way the slab method is used to analyze the stresses 

and forces. 

The first step is to isolate a segment of angle d@ in the cylinder of radius r 

and height h as shown in figure 2a. Pick a small element with a radial length dx 
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Figure 2.2 Stresses on an element in forging a solid cylindrical workpiece 
between flat dies. 

and apply on this element all the normal and frictional stresses acting on this 

element. Balancing the forces on this element in the radial direction results in 

a ,x.d0.d + 20 shox S — 2up ,x.d0.d0—-(o, + da, )(x+ dx).dOx)=0 (2.5) 

Simplifying Equation (2.5) by dividing it by xhdx results in Equation (2.6). 

oc 6) 
ax x h 

Noting that the circumferential and radial incremental strain are equal, 
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0,=0,, 

Thus Equation 6 becomes 

do, _ 240, 

ax h 

Using the distortion-energy criterion 

(o,-0, +(0,-0,) +(0,-0,)7 =2Y" 

so 

0,-0,=Y 

Since the yield stress Y is a constant 

do, =do, 

Applying Equation (2.10) the following is obtained 

  

Solving Equation (2.14) provides 
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(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14)



  

o,=Ce *h (2.15) 

applying the boundary conditions such as x=r , o=0, oY, the value of C 

becomes 

2 C=YeX/ (2.16) 

Thus, 

2p (r-x) 
P=0,=Ye th (2.17) 

The area under the pressure curve of Figure 3 is the upsetting force of the 

specimen, this area can be obtained by integration, and the average pressure P.y 

can be approximated by the following expression 

Qur 
PL =Y(1+— aw = Y( 3h (2.18) 

Thus the forging force is 

F=(P,,)(rr?) (2.19) 
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