5-9-1968

The University of Dayton's Department of Civil Engineering Work Plan Approved

Follow this and additional works at: https://ecommons.udayton.edu/news_rls

Recommended Citation

https://ecommons.udayton.edu/news_rls/3281

This News Article is brought to you for free and open access by the Marketing and Communications at eCommons. It has been accepted for inclusion in News Releases by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mchlange1@udayton.edu.
DAYTON, Ohio, May 9, 1968 — The Department of Civil Engineering at the University of Dayton has learned that its work plan on "Digital Computer Control of Traffic Signal Systems on a Real-Time Basis" has been approved by the Department of Highways, State of Ohio, Dr. Maurice Graney, Dean of UD's School of Engineering; revealed today. The project, when carried out, would computerize the controls in downtown Dayton with the object of determining through careful research, the design of optimum traffic signal timing.

While announcing the approval, Dr. Graney pointed out that funds for the program have not been made available, but a decision may be made before the start of the fiscal year in July. Estimated cost of the project, submitted by Dr. Seymour Ryckman, Chairman, Department of Civil Engineering, and Mr. George F. Driscoll, Project Advisor, is $1,143,893 for a four-year study.

Dr. Graney also revealed that the Dept. of Highways is studying proposals to reduce the scope of the approved project in order that research on a reduced scale can begin soon.

Mr. Driscoll, in speaking of the proposal, said that the Department of Highways has recognized that the use of digital computer for control of the signal lights and simultaneous evaluation of the entire traffic situation.

The ultimate purpose, said Mr. Driscoll, is to obtain information for traffic engineers which will provide advantages such as minimizing driver delay at traffic signals, increasing capacity of existing street systems and making auto travel in downtown areas more comfortable.

Similar projects, said Mr. Driscoll, have been undertaken in Toronto, Canada; San Jose, California; Glasgow, Scotland; London, England, and New York City.

"An interesting feature of the computer traffic signal control system," says Mr. Driscoll, "is the use of many vehicle detectors buried in the street at strategic points throughout the downtown area. These detectors would feed information of vehicle travel directly to the digital computer for immediate analysis.

"In order to accomplish this exchange of data from detector to computer and from computer to traffic signal controller, an extensive wire network will also be required for data transmission," Driscoll continued. "Interconnecting wires will carry the data from vehicles using the street to the computer which will program the traffic signals in the best manner for efficient movement of traffic. Because traffic conditions are constantly changing, a digital computer is extremely well adapted to handling changes of condition immediately."

The Dayton City Commission first approved the study at a regular meeting on October 28, 1964.