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ABSTRACT 

LEARNING BEHAVIOR OF THE LMS MULTICHANNEL ADAPTIVE SIGNAL 
ENHANCER FOCUSING ON THE VISUAL EVOKED BRAIN POTENTIAL 

Name: Slifka, Janet Louise 

University of Dayton, 1989 

Advisor: John J. Westerkamp, Ph. D. 

An in-depth analysis of the learning behavior of the least-mean-square 

(LMS) adaptive algorithm was performed. Simulation studies show that the learned 

filter coefficients decay at a rate proportional to the convergence constant following 

the disappearance of the underlying signal. This conflicts with the need for rapid 

convergence when the signal changes as is the case for the evoked potential. Studies 

involving mean-square error measurements show that significant improvements to 

weight retention can be obtained by using a "gating" algorithm which updates the 

weights only when the signal is present. A symmetric noncausal format for the 

weights was shown to extract the initial peak of the signal with the most consistency. 

After investigating several filter configurations, averaging was found to function 

approximately as well as each filter when attempting to estimate the single-response 

evoked potential. Yet, for the cases when detection of loss of the signal is most 

crucial, the adaptive filter offers more advantages than averaging.  
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CHAPTER I 

INTRODUCTION 

Adaptive filters, specifically those using the least-mean-square (LMS) 

algorithm, have been studied extensively for well-behaved signals. Very few in-depth 

Studies have been made involving nonstationary or transient signals. Primarily this is 

due to their intractable forms for analysis. 

The evoked potential (EP), an electrical signal produced by the brain in 

response to some effective sensory stimulus, is a transient nonstationary signal. When 

recorded, these brain responses occur for a short duration, die away, and then occur 

again at the next stimulus presentation. This constantly changing signal environment 

makes the adaptive filter an attractive solution to EP estimation because it avoids a 

long and complicated design process by designing itself. Yet at the same time, the EP 

presents several problems to adaptation. A nonstationary signal does not have a single 

optimum set of weights (Widrow 1976). As the signal statistics change, so does the 

optimum set of weights. This means that only under special circumstances can the 

weights track close to the current optimum and achieve near Wiener filter results 

(Widrow 1976,Gardner 1987). A second problem, the transitory nature of the signal, is 

almost a greater detriment to convergence. When the signal is present only in short 

duration bursts, the weights have a limited time to converge before the signal is gone. 

In essence, the adaptive filter is faced with a new system when the signal stops and 

only noise is present at the input. As will be shown in succeeding sections, the



weights decay away from their previous nearly-converged values toward values 

corresponding to the new system’s correlation statistics. This means that at least the 

first portion of the signal will be lost to the converging process (Westerkamp 1987b). 

Studies aimed at correcting this problem by speeding up the convergence 

process have been conducted by Westerkamp (Westerkamp 1987b). Westerkamp’s 

research raised questions about the learning behavior of the LMS adaptive filter. The 

purpose of this research effort was to obtain that knowledge and then use it to develop 

a modified algorithm that would optimally learn and retain the weights. 

Chapter II presents a brief review of related research as found in existing 

literature. Following that in Chapter III is an intensive discussion of the signal. The 

development of the modified algorithm is closely tied to the signal characteristics and 

understanding those is essential to finding an optimal solution. Chapter IV contains a 

short summary of the adaptive linear combiner and the LMS algorithm. Chapter V 

examines the theoretical analysis of the weight deterioration behavior and Chapter VI 

presents the derivation of the modified algorithm. Results from applying the modified 

algorithm to simulated evoked potential buried in prestimuius electroencephalogram 

(EEG) and actual human visual evoked potential are contained in Chapter VII. Also in 

Chapter VII, the modified algorithm is used within a specific application -- that of 

detection of loss of signal. The final chapter, Chapter VIII, is a discussion of results.



CHAPTER II 

LITERATURE REVIEW 

Existing literature has provided a broad range of background material. The 

following is a brief summary of these resources with pertinent observations regarding 

the present research. 

The visual evoked potential is buried within the on-going EEG. With a 

signal-to-noise ratio (SNR) reaching -6 dB, the EP is difficult to view without 

processing. Based on the random nature of the background EEG, response averaging 

has been traditionally used for EP estimation. Averaging assumes that the scalp- 

recorded response is time-locked to the stimulus and identical in both latency and 

contour from one stimulus to the next. When consecutive responses are averaged, the 

spontaneous EEG will cancel as the EP is enhanced. The problems with this approach 

are that several hundred responses are required to obtain one estimate and averaging 

can obscure meaningful variations existing in the single-response and between 

different responses. 

Attempts to estimate single-response evoked potentials have centered on the 

use of a priori information. One approach has been to examine prestimulus EEG and 

create a filter that attempts to cancel any components in the post-stimulus recording 

that are predictable from prestimulus statistics. Results from this focus on reducing



the number of responses needed for averaging to obtain a usable estimate (Krieger 

1986). 

Another method involved designing an optimum linear time-varying filter 

based on a posteriori estimates of the correlation matrices, assuming that the EEG is 

zero-mean and uncorrelated with the EP. This research, conducted by Westerkamp 

and Aunon (Westerkamp 1987a), provides the best to-date estimates of the single- 

response EP and will be used for comparison with the results of this research. In this 

approach, a multielectrode structure was used. Scalp-recorded data from each 

electrode were passed through a time-varying filter. A time-varying filter possesses a 

different impulse response at each time instant. The filtered results from each 

electrode were summed to produce the final EP estimate. This work makes the 

assumption that a series of recorded responses are available for analysis and design, 

and that it is these responses which will be filtered using the final design. If responses 

outside this set were passed throughout the filter, performance could deteriorate. 

Also, the intense post-processing involved makes this unsuitable for real-time 

applications. 

The challenge is to find a way to estimate the single-response EP with a 

minimum amount of a priori information so that real-time processing could take place. 

This naturally leads to the use of adaptive filters. This incredibly powerful tool 

designs itself, eliminating the need for extensive a priori statistical knowledge and 

time-consuming design processes, and can adapt automatically as the signal changes. 

Madhavan proposed using adaptive noise cancellation techniques for estimating the EP 

(Madhavan 1984). In this structure, the noise in the desired channel is assumed to be



correlated with the noise in the input channel. Promising simple simulation results 

were followed up with more complicated simulations involving crosstalk (Madhavan 

1986). For scalp-recorded data it is not possible to record EEG at the time of the EP 

that doesn’t contain some signal that is correlated with the EP. This produces 

crosstalk within the data recorded at the electrodes. Madhavan used a three-stage 

Weighted Least Squares Lattice (WLSL) structure to cancel the effects of crosstalk and 

effectively estimate the EP. In this set-up, the weights were updated when no signal 

was present and held constant when the signal was present. Significant improvements 

for SNR in simulated data were obtained. This implementation, however, has a high 

degree of complexity which may make it unsuitable for real-time applications and has 

not been tested on human data. 

The LMS. algorithm seems most attractive for its simplicity. In a recent 

paper by Thakor (Thakor 1987), the LMS algorithm was applied to the evoked 

potential signal. In this system, the final output was the result of averaging previous 

outputs. As the number of averaged outputs increases, the system is subject to the 

same constraints that conventional averaging carries in terms of distortion of single- 

response characteristics. In a correspondence on this article, Madhavan (Madhavan 

1988) points out that any averaging done before the signal is input to the channels 

introduces unremovable distortions in the output. He also analyzes the application of 

the multichannel adaptive signal enhancer (MASE) structure proposed by Ferrara and 

Widrow (Ferrara 1981). He states the requirement that correlation must exist between 

channels but that identical signals within the channels is an uneffective filtering 

method. This same structure was further investigated by Westerkamp (Westerkamp 

1987b). In this case, the LMS was applied to the EP using the standard transversal



filter in the MASE format. The major problem found with the LMS was that the 

initial peaks of the EP were lost to the converging process. Attempts were made to 

speed up the convergence rate using lattice and Fast Fourier Transform (FFT) methods 

that orthogonalize the data to remove the eigenvalue spread. Results continued to 

show loss of signal components in the early peaks to the converging process. This 

established the need to understand the learning and extinguishing behavior of the LMS 

algorithm. 

This research effort had two major goals: 

(1) characterize the learning behavior of the LMS algorithm; 

(2) create a modified algorithm capable of filtering 

nonstationary and transient signals such as the EP. 

Understanding the learning behavior encompasses various factors such as the 

effects of filter length and number of reference channels in the multichannel structure, 

and generally quantifying the extinguishing behavior of the weights (Westerkamp 

1987c). These objectives required further pursuit of the literature. Although many 

papers have been written concerning the convergence of the LMS algorithm, the most 

relevant sources of information were those relating to the nonstationary signal. The 

standard transversal LMS filter in the nonstationary environment functions well for 

slowly-varying nonstationarities (Widrow 1976). In fact, the LMS performs as well as 

the exact least-squares for certain nonstationary problems (Widrow 1984). Gardner 

provided in-depth analyses of the nonstationary problem by examining the system 

identification problem (Gardner 1987). Unfortunately the EP does not fit any of the 

mentioned classes of signal; it is highly nonstationary and buried in noise. It is not



known exactly what the EP looks like since the only reference is estimated. Obtaining 

Statistics is not only difficult for nonstationary signals but also memory and processor 

intensive. Even collecting accurate and artifact-free data in large quantities is difficult 

due to the extreme measures that must be taken to avoid noncerebral potentials from . 

appearing. 

Basic analyses of the weights as presented by Widrow and Stearns (Widrow 

1985) provided a start for analyzing the learning behavior of the LMS and extracting 

key ideas from available literature proved useful in designing a modified algorithm. 

This modified algorithm must retain the learning of the weights so that reconvergence 

of the algorithm is not required with each new response. Since one of the variable 

factors in the response is latency, unwanted phase distortion must be minimized by the 

filter. Noise must be effectively canceled when the EP is not present so that the 

response may be clearly viewed. The system must also operate at near real-time speed 

for efficient use of the responses. Among the key ideas available from literature were 

some variations on the LMS. These included a variable-step LMS (Harris 1986), a 

lattice structure (Griffiths 1979,Savoji 1987), a complex LMS algorithm (Fisher 1983, 

Sherwood 1986), a frequency domain algorithm (Lee 1987), and a time-sequenced 

algorithm (Ferrara 1981). Each modification added its own degree of complexity to 

the solution. It is necessary to keep the complexity to a minimum so that processing 

can present a near real-time output. After analysis and testing, the final modified 

algorithm borrowed ideas from several areas. From the WLSL came the idea of 

turning learning on or off, which also borrowed from neural networks the concept of 

training records to establish the weights (Rumelhart 1986). The necessity of 

minimizing phase distortion lead to a noncausal form for the filter weights. Finally



      previous promising work with the multichannel system suggested that it be maintained.



CHAPTER III 

SIGNAL ATTRIBUTES AND SIMULATION 

When designing, modifying, or simply applying an algorithm to a set of 

data, it is essential to understand the signal and its properties. If this understanding is 

present, optimal choice of algorithm can be made, distortion of the output can be 

avoided, and results can be properly evaluated. For this study, a complete analysis of 

both the EEG and the EP is necessary. Several areas were researched: the auto- and 

cross-correlations of the EEG, the autocorrelation function and the power spectral 

density of the actual EP and a simulated EP, and the averages over many records of 

the EP and EEG. 

When collecting visual evoked potential data, the subject views a patterned 

stimulus and electrodes attached to the scalp record the electrical response of the 

brain. This recorded signal has two parts -- the evoked potential which measures the 

dynamic response of the brain to the stimulus, and the EEG which represents the on- 

going brain activity. The peak amplitudes and latencies in the individual EP are 

highly sensitive to many factors, especially to the pattern of stimulus presentation and 

the subject’s visual acuity (Picton 1973). If the stimuli are presented too quickly, the 

evoked response deteriorates as successive responses overlap. Because of this problem, 

there must be a suitable pause between stimulus presentations. The recorded data then 

consist of short duration "bursts" of signal separated by longer periods of noise only -- 

the EEG. The EEG itself tends to obscure the EP such that it is usually impossible 

9  
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for the eye to discern. The evoked potential can be a complicated series of peaks, 

however, a rather simple response is obtained for visual stimuli. An appropriate 

checkerboard pattern stimulus produces a large amplitude response (Eason 1970). It is 

that response which will be examined here. This lower checkerboard stimulus 

produces a response with a positive peak approximately 85 msec after the stimulus, a 

negative valley approximately 100 msec after the stimulus and a positive peak with a 

185 msec latency. The total duration of the signal is approximately 300 msec. The 

peak amplitudes and latencies of these components vary, however, from one response 

to the next (Brazier 1964). Shown in Figure | is the average of 100 responses with all 

peaks labeled. Each data record contains 375 points which were obtained at a 

sampling frequency of 250 Hz. The stimulus was presented at sampling point 125. 

During EP data collection, the subjects were seated comfortably in a 

soundproofed and electromagnetically shielded booth. The booth was dimly lit with 

direct current lamps to eliminate 60 cycle interference within the booth. The subjects 

viewed a CONRAC video monitor from a distance of 1.5 m. The video display 

subtended 11.5 (horizontal) by 8.5. (vertical) of visual angle. The experiment timing 

was controlled by a microprocessor system which triggered the analog-to-digital (A/D) 

conversion and the stimulus presentation. A Grass pattern generator produced 

checkerboard patterns with check size 18 min (256 checks in a full display) which 

appeared on the CONRAC monitor. The stimulus parameters were chosen in an 

attempt to elicit maximal amplitudes in the average EP’s (Eason 1970). Prior to the 

experiment, the intensity of the visual display was measured and adjusted to 6 ft - 

lamberts for both the stimulus on and blank screens. This was to ensure that no flash 

response would contaminate the pattern response due to changes in the intensity.
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Beckman Ag/AgCl EEG electrodes were applied with conductive paste to scalp 

locations Pz and Cz according to the International Federation "10-20" system (Jasper 

1958), of which the Pz data will be examined here. Monopolar recordings were made 

at each electrode with reference to electrically linked mastoids. The forehead was 

used to ground the subject. An eye channel (EOG) was included to monitor eye blink 

artifact. Electrode impedances were measured before the experiment and were found 

to be below 10 kN (McGillem 1985). 

It has been previously assumed that the EEG is uncorrelated from one 

response to the next. This assumption is necessary for the proper functioning of the 

LMS algorithm. If some correlation did exist then the algorithm would find it and the 

evoked potential estimate would be distorted. Time domain techniques were used to 

estimate the average autocorrelation function of the EEG. As seen in Figure 2(a), the 

EEG has a variance or noise power of about 40. Figure 3(a) shows the FFT of the 

windowed average autocorrelation function estimate. This is an estimate of the 

average power spectral density of the EEG. 

It is only possible to obtain quantitative measures of the performance of a 

filter if the desired output is exactly known. If that signal is defined, the filter output 

can be compared to the ideal output and statistics can be collected. For this research 

the evoked potential was simulated with a series of raised cosines with random peaks 

and latencies. This ‘method of simulation is not physiologically accurate but does 

provide a relatively simple and clean signal for analysis. Generation was done 

utilizing a program developed by Aunon and McGillem (McGillem 1985) for their 

investigations into the visual evoked potential. The peaks and latencies have a zero-  
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mean unit-variance Gaussian distribution centered around entered values for mean and 

variance. The means and variances used to simulate the evoked potential were 

estimated from latency-corrected average (McGillem 1985). These values are shown in 

Table 1 and the values computed from the generated signals are shown in Table 2. A 

few typical simulated responses are shown in Figure 4. 

While visually this appears to approximate the form of the average signal 

_ shown in Figure 1, it is also important that they share similar autocorrelation functions 

as well as power spectral densities. To assure this, time-domain techniques were used 

to estimate the average autocorrelation function of both the simulated EP and the 

actual averaged EP. The results are shown in Figure 2(b). The FFT was used to 

achieve the average power spectral densities of these two signals and can be seen in 

Figure 3(b). It should be noted that since the signals involved are nonstationary, these 

estimates pertain to an average signal. The actual EP can be seen to have a slightly 

different magnitude in its power spectrum than that in the simulated EP. The 

simulated EP has a power spectrum that overlaps completely the frequency range of 

the actual EP spectrum although differences exist in amplitude. Both the actual and 

simulated EP cover a similar range of frequencies to those in the EEG. The removal 

of noise that overlaps in frequencies with the desired signal is one of the difficulties 

the filter must attempt to overcome. 

For testing purposes, the simulated EP was added to the 125 points of 

prestimulus EEG that is at the beginning of each data record. Having actual EEG as 

the noise for the simulation was considered to present a more accurate representation 

of the actual situation rather than using a generated noise such as white noise. The
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drawback to this decision is that only 125 points of noise were available. This means 

that the simulated EP must have a shorter duration than the actual signal in order to 

have proportionate durations of noise before and after the signal is present. These 

noise portions are essential since the filter will be noncausal. When generating the 

first signal output point, one-half of the weights will be on prestimulus EEG and 

one-half will be on the signal. Because of this, at least one-half the maximum 

number of filter weights of EEG data points must be present before the simulated EP 

begins. For the data generated here, the earliest simulated EP begins at point 31, but 

the average starting point is approximately 33. The maximum filter length tested was 

65 due to these same data constrictions. 
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TABLE 1 

Latency Corrected Averaging Values Used for Simulating the EP. 

  

Latency . 
Latency(ms) Amplitude( z V) 

St.Dev.(ms) 
  

  

74.14 7.41 6.28 

111.60 6.65 -13.07 

146.87 8.99 3.11 

170.00 7.81 -2.22 

202.95 11.32 8.42           
  

TABLE 2 

Computed Mean and Variance Values from Simulated EP. 

  

Latency . 
Latency(ms) Amplitude( uz V) 

St.Dev.(ms) 
  

  

75.06 6.94 6.45 

111.52 6.28 -13.16 

145.50 9.07 3.20 

169.55 6.78 -2.34 

202.33 10.37 8.59           
   



Figure 1. Average of 100 Human Visual Evoked Potential Responses Collected at 

Electrode Pz (Lower Checkerboard Stimulus). 
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(a) EEG 

  

(b) Averaged Human EP (——) vs. 

Averaged Simulated EP (---) 

Figure 2. (a) Estimate of the Autocorrelation Function of the EEG from 125 Points of 

Prestimulus Data, (b) Estimate of the Autocorrelation Function of the 

Averaged Human EP and the Averaged Simulated EP. 
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(a) EEG 2 (b) Averaged Human EP (—) vs. 

Averaged Simulated EP (---) 

Figure 3. (a) Estimate of the Power Spectral Density of the EEG from the 

Autocorrelation Function of Figure 2a, (b) Estimate of the Power Spectral 
Density of the Averaged Human EP and the Average Simulated EP from the 
Autocorrelation Function of Figure 2b.



  

Figure 4. Examples of the First Five Simulated EP Responses. 

 



20 

The mean square error is a quadratic function of the weights. For a two- 

weight case, plotting the MSE as a function of the weights would produce a three- 

dimensional parabola. The minimum MSE would be the bottom of the "bowl" and 

steepest descent gradient search techniques, from which the LMS is derived, attempt 

to find this bottom. As the weights converge, the gradient estimate directs the weights 

down the bowl toward a zero value for the gradient. At that point the weights reach 

their optimum value and mean square error is minimized. For the highly 

nonstationary case, the optimum weight values change, causing the shape of the bowl 

to change as well as move around in the error space. It is desirable to have the 

algorithm track close to the bottom of the bowl as it moves. In this way, the LMS 

could stay close to the optimum weights in a way the fixed Wiener filter cannot. For 

nonstationary inputs, the Wiener filter still attempts to provide an optimum solution. 

Estimates of R and P can be made for nonstationary data. Computing 

“1 
w*=R P (9) 

where the * indicates the optimal value, then yields the optimum filter impulse 

response. For the EP+EEG, this solution is a bandpass filter and an estimate of the 

Wiener filter impulse response using R and P estimated from the averaged EP of 

Figure 1 and 100 records of prestimulus EEG is shown in Figure 6(a). The filter sees 

the signal as moving around within a band of frequencies and decides that the best it 

can do is to pass that band as seen in Figure 6(b). Unfortunately, as already shown, 

the frequencies of the EP overlap those of the EEG and a great deal of noise would 

still make it through the filter.  
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Figure 5. Adaptive Linear Combiner Structure. 
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Figure 6. (a) Optimal Wiener Filter Impulse Response Computed from Estimates of R 

and P, (b) Frequency Domain Representation of the Wiener Filter Estimate. 

 



CHAPTER V 

WEIGHT DETERIORATION 

The adaptive filter iteratively reaches an optimum set of weights by 

estimating the gradient and following it down the error surface toward a solution. 

Steepest descent methods of gradient estimation define the error surface as 

s= Efe]. (10) 

The LMS algorithm estimates this value as 

a. (11) 

Recalling the definition of the gradient (Widrow 1985), 

( ae, / Aw 4) (de, / dw 9) 

v= = 26 = -26X,. (12) 

        ( be, /8w ,) (de, / dw ,) 
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Substitution yields a noisy gradient estimate of the form 

W= -26,X,, (13) 

and a corresponding weight update equation of 

Weaz Wat 2eX, (14) 

where yp is the convergence constant. 

A simple case would be an input that is signal plus noise and a desired that 

is another instance of the signal such that the signals in the two channels are 

correlated and noise exists only in the input channel. For simplicity, assume that the 

noise is white noise with a power denoted by ¢ . 

If the system is running as desired, after some time the weights will 

converge to an optimum value called W* . At this point let the two signals be turned 

off. The weight behavior can be traced as follows: 

Wiz Wyt+2ueX,. (15) 

Examine the expected value of these weights: 

E[W,]=ElW,)] +2 Ef ¢X,], (16) 

but using (4) 
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EL W EL W,] +24 El (d,- y,) X,] (17a) 
kat | = 

=E(W,]+2u E[d,X,-y,X,].- (17b) 

As stated, the desired channel signal is now zero which allows the above equation to 

be written as 

EL W EL W,]- 2 Ely,X,] (18a) 
xa! = 

T 

=E[W,]- 24 ELX,X,W,] (18b) 

Assume that the weights and the input are uncorrelated. 

T 

ET W,J=ELW,]- 24 ELX,X,JEHW,!) (19) 

T 
But E[ X, X, ] is the autocorrelation matrix R . Substituting and regrouping yields: 

EL W,,]=(1- 24 )ELW,1, (20) 

and extending this another point gives 

E[ W ol =(1-2aR) ELW J =(1-2eR) ELW,). (21) 

In general, 

FLW, J=(1-24R) EW]. (22) 

Assume the time instant k is the last appearance of the signal before it is 

turned off. If the system has converged, then at k:



and for samples beyond that occurring at k, 

EUW, ,J=WA(1-2eR) , 

where the p subscript on the weight vector indicates the optimal set of weights as 

pertaining to the previous system when the signal was present. Suppose the system 

had just one weight. Recalling that R is the autocorrelation matrix of the input and 

the input is white noise then 

EL W,,]=w "(1 -2u4) . (25) 

This shows an exponential decay of the weight toward zero. The rate of that decay is 

dependent on the power in the noise and the convergence constant. If both numbers 

are << 1, the weights will deteriorate very slowly. As either the noise power or pu 

increases, the decay rate increases. An example of the weight trace behavior for a 

two weight case is shown in Figure 7. In this example, the white noise has a power of 

0.01 and uw is 0.05. The signal to be detected is turned off at point sample 600 and 

turned back on at sample point 1100. When the signal disappears, the weights head 

toward a value of zero and must reconverge when the signal reappears. Both weights 

were initially zero for this test. 

Does this apply to the evoked potential? When the EP is not present, the 

desired channel does contain a signal, the EEG. Now assuming that the EEG in the 

desired is uncorrelated with the EEG in the input produces the following. Rewriting  
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equation (11) 

T 

W a= W,t 24X (dk - X, W,) (26a) 
T 

= W,+2ud,X,- 2uX,X,W,. (26b) 

But taking the expected value causes the 2 ud , *,, term to become zero and the results 

are the same. This says that learning is lost for those periods between stimulus 

response. If those periods were considered by the algorithm to not exist then the filter 

would have better retention of the learning.



  
  

Figure 7. Weight Trace Behavior for Two-Weight Case. Sinusoid in White Noise for 
600 Points and Disappearance of Sinusoid for 500 Points. Repeat Cycle. 
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