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ABSTRACT

LEARNING BEHAVIOR OF THE LMS MULTICHANNEL ADAPTIVE SIGNAL
ENHANCER FOCUSING ON THE VISUAL EVOKED BRAIN POTENTIAL

Name: Slifka, Janet Louise
University of Dayton, 1989

Advisor: John J. Westerkamp, Ph. D.

An in-depth analysis of the learning behavior of the least-mean-square
(LMS) adaptive algorithm was performed. Simulation studies show that the learned
filter coefficients decay at a rate proportional to the convergence constant following
the disappearance of the underlying signal. This conflicts with the need for rapid
convergence when the signal changes as is the case for the evoked potential. Studies
involving mean-square error measurements show that significant improvements to
weight retention can be obtained by using a "gating" algorithm which updates the
weights only when the signal is present. A symmetric noncausal format for the
weights was shown to extract the initial peak of the signal with the most consistency.
After investigating several filter configurations, averaging was found to function
approximately as well as each filter when attempting to estimate the single-response
evoked potential. Yet, for the cases when detection of loss of the signal is most

crucial, the adaptive filter offers more advantages than averaging.
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CHAPTER 1

INTRODUCTION

Adaptive filters, specifically those using the least-mean-square (LMS)
algorithm, have been studied extensively for well-behaved signals. Very few in-depth
studies have been made involving nonstationary or transient signals. Primarily this is

due to their intractable forms for analysis.

The evoked potential (EP), an electrical signal produced by the brain in
response to some effective sensory stimulus, is a transient nonstationary signal. When
recorded, these brain responses occur for a short duration, die away, and then occur
again at the next stimulus presentation. This constantly changing signal environment
makes the adaptive filter an attractive solution to EP estimation because it avoids a
long and complicated design process by designing itself. Yet at the same time, the EP
presents several problems to adaptation. A nonstationary signal does not have a single
optimum set of weights (Widrow 1976). As the signal statistics change, so does the
optimum set of weights. This means that only under special circumstances can the
weights track close to the current optimum and achieve near Wiener filter results
(Widrow 1976,Gardner 1987). A second problem, the transitory nature of the signal, is
almost a greater detriment to convergence. When the signal is present only in short
duration bursts, the weights have a limited time to converge before the signal is gone.
In essence, the adaptive filter is faced with a new system when the signal stops and

only noise is present at the input. As will be shown in succeeding sections, the



weights decay away from their previous nearly-converged values toward values
corresponding to the new system’s correlation statistics. This means that at least the

first portion of the signal will be lost to the converging process (Westerkamp 1987b).

Studies aimed at correcting this problem by speeding up the convergence
process have been conducted by Westerkamp (Westerkamp 1987b). Westerkamp's
research raised questions about the learning behavior of the LMS adaptive filter. The
purpose of this research effort was to obtain that knowledge and then use it to develop

a modified algorithm that would optimally learn and retain the weights.

Chapter II presents a brief review of related research as found in existing
literature. Following that in Chapter III is an intensive discussion of the signal. The
development of the modified algorithm is closely tied to the signal characteristics and
understanding those is essential to finding an optimal solution. Chapter IV contains a
short summary of the adaptive linear combiner and the LMS algorithm. Chapter V
examines the theoretical analysis of the weight deterioration behavior and Chapter VI
presents the derivation of the modified algorithm. Results from applying the modified
algorithm to simulated evoked potential buried in prestimuius electroencephalogram
(EEG) and actual human visual evoked potential are contained in Chapter VII. Also in
Chapter VII, the modified algorithm is used within a specific application -- that of

detection of loss of signal. The final chapter, Chapter VIII, is a discussion of results.



CHAPTER II

LITERATURE REVIEW

Existing literature has provided a broad range of background material. The
following is a brief summary of these resources with pertinent observations regarding

the present research.

The visual evoked potential is buried within the on-going EEG. With a
signal-to-noise ratio (SNR) reaching -6 dB, the EP is difficult to view without
processing. Based on the random nature of the background EEG, response averaging
has been traditionally used for EP estimation. Averaging assumes that the scalp-
recorded response is time-locked to the stimulus and identical in both latency and
contour from one stimulus to the next. When consecutive responses are averaged, the
spontaneous EEG will cancel as the EP is enhanced. The problems with this approach
are that several hundred responses are required to obtain one estimate and averaging
can obscure meaningful variations existing in the single-response and between

different responses.

Attempts to estimate single-response evoked potentials have centered on the
use of a priori information. One approach has been to examine prestimulus EEG and

create a filter that attempts to cancel any components in the post-stimulus recording

that are predictable from prestimulus statistics. Results from this focus on reducing




the number of responses needed for averaging to obtain a usable estimate (Krieger

1986).

Another method involved designing an optimum linear time-varying filter
based on a posteriori estimates of the correlation matrices, assuming that the EEG is
zero-mean and uncorrelated with the EP. This research, conducted by Westerkamp
and Aunon (Westerkamp 1987a), provides the best to-date estimates of the single-
response EP and will be used for comparison with the results of this research. In this
approach, a multielectrode structure was used. Scalp-recorded data from each
electrode were passed through a time-varying filter. A time-varying filter possesses a
different impulse response at each time instant. The filtered results from each
electrode were summed to produce the final EP estimate. This work makes the
assumption that a series of recorded responses are available for analysis and design,
and that it is these responses which will be filtered using the final design. If responses
outside this set were passed throughout the filter, performance could deteriorate.
Also, the intense post-processing involved makes this unsuitable for real-time

applications.

The challenge is to find a way to estimate the single-response EP with a
minimum amount of a priori information so that real-time processing could take place.
This naturally leads to the use of adaptive filters. This incredibly powerful tool
designs itself, eliminating the need for extensive a priori statistical knowledge and
time-consuming design processes, and can adapt automatically as the signal changes..
Madhavan proposed using adaptive noise cancellation techniques for estimating the EP

(Madhavan 1984). In this structure, the noise in the desired channel is assumed to be



correlated with the noise in the input channel. Promising simple simulation results
were followed up with more complicated simulations involving crosstalk (Madhavan
1986). For scalp-recorded data it is not possible to record EEG at the time of the EP
that doesn’t contain some signal that is correlated with the EP. This produces
crosstalk within the data recorded at the electrodes. Madhavan used a three-stage
Weighted Least Squares Lattice (WLSL) structure to cancel the effects of crosstalk and
effectively estimate the EP. In this set-up, the weights were updated when no signal
was present and held constant when the signal was present. Significant improvements
for SNR in simulated data were obtained. This implementation, however, has a high
degree of complexity which may make it unsuitable for real-time applications and has

not been tested on human data.

The LMS. algorithm seems most attractive for its simplicity. In a recent
paper by Thakor (Thakor 1987), the LMS algorithm was applied to the evoked
potential signal. In this system, the final output was the result of averaging previous
outputs. As the number of averaged outputs increases, the system is subject to the
same constraints that conventional averaging carries in terms of distortion of single-
response characteristics. In a correspondence on this article, Madhavan (Madhavan
1988) points out that any averaging done before the signal is input to the channels
introduces unremovable distortions in the output. He also analyzes the application of
the multichannel adaptive signal enhancer (MASE) structure proposed by Ferrara and
Widrow (Ferrara 1981). He states the requirement that correlation must exist between
channels but that identical signals within the channels is an uneffective filtering

method. This same structure was further investigated by Westerkamp (Westerkamp

1987b). In this case, the LMS was applied to the EP using the standard transversal




filter in the MASE format. The major problem found with the LMS was that the
initial peaks of the EP were lost to the converging process. Attempts were made to
speed up the convergence rate using lattice and Fast Fourier Transform (FFT) methods
that orthogonalize the data to remove the eigenvalue spread. Results continued to
show loss of signal components in the early peaks to the converging process. This
established the need to understand the learning and extinguishing behavior of the LMS

algorithm.

This research effort had two major goals:
(1) characterize the learning behavior of the LMS algorithm;
(2) create a modified algorithm capable of filtering

nonstationary and transient signals such as the EP.

Understanding the learning behavior encompasses various factors such as the
effects of filter length and number of reference channels in the multichannel structure,
and generally quantifying the extinguishing behavior of the weights (Westerkamp
1987c). These objectives required further pursuit of the literature. Although many
papers have been written concerning the convergence of the LMS algorithm, the most
relevant sources of information were those relating to the nonstationary signal. The
standard transversal LMS filter in the nonstationary environment functions well for
slowly-varying nonstationarities (Widrow 1976). In fact, the LMS performs as well as
the exact least-squares for certain nonstationary problems (Widrow 1984). Gardner
provided in-depth analyses of the nonstationary problem by examining the system
identification problem (Gardner 1987). Unfortunately the EP does not fit any of the

mentioned classes of signal; it is highly nonstationary and buried in noise. It is not



known exactly what the EP looks like since the only reference is estimated. Obtaining
statistics is not only difficult for nonstationary signals but also memory and processor
intensive. Even collecting accurate and artifact-free data in large quantities is difficult
due to the extreme measures that must be taken to avoid noncerebral potentials from .

appearing.

Basic analyses of the weights as presented by Widrow and Stearns (Widrow
1985) provided a start for analyzing the learning behavior of the LMS and extracting
key ideas from available literature proved useful in designing a modified algorithm.
This modified algorithm must retain the learning of the weights so that reconvergence
of the algorithm is not required with each new response. Since one of the variable
factors in the response is latency, unwanted phase distortion must be minimized by the
filter. Noise must be effectively canceled when the EP is not present so that the
response may be clearly viewed. The system must also operate at near real-time speed
for efficient use of the responses. Among the key ideas available from literature were
some variations on the LMS. These included a variable-step LMS (Harris 1986), a
lattice structure (Griffiths 1979,Savoji 1987), a complex LMS algorithm (Fisher 1983,
Sherwood 1986), a frequency domain algorithm (Lee 1987), and a time-sequenced
algorithm (Ferrara 1981). Each modification added its own degree of complexity to
the solution. It is necessary to keep the complexity to a minimum so that processing
can present a near real-time output. After analysis and testing, the final modified
algorithm borrowed ideas from several areas. From the WLSL came the idea of
turning learning on or off, which also borrowed from neural networks the concept of
training records to establish the weights (Rumelhart 1986). The necessity of

minimizing phase distortion lead to a noncausal form for the filter weights. Finally



previous promising work with the multichannel system suggested that it be maintained.



CHAPTER III

SIGNAL ATTRIBUTES AND SIMULATION

When designing, modifying, or simply applying an algorithm to a set of
data, it is essential to understand the signal and its properties. If this understanding is
present, optimal choice of algorithm can be made, distortion of the output can be
avoided, and results can be properly evaluated. For this study, a complete analysis of
both the EEG and the EP is necessary. Several areas were researched: the auto- and
cross-correlations of the EEG, the autocorrelation function and the power spectral
density of the actual EP and a simulated EP, and the averages over many records of

the EP and EEG.

When collecting visual evoked potential data, the subject views a patterned
stimulus and electrodes attached to the scalp record the electrical response of the
brain. This recorded signal has two parts -- the evoked potential which measures the
dynamic response of the brain to the stimulus, and the EEG which represents the on-

going brain activity. The peak amplitudes and latencies in the individual EP are

highly sensitive to many factors, especially to the pattern of stimulus presentation and

the subject’s visual acuity (Picton 1973). If the stimuli are presented too quickly, the
evoked response deteriorates as successive responses overlap. Because of this problem,
there must be a suitable pause between stimulus presentations. The recorded data then
consist of short duration "bursts" of signal separated by longer periods of noise only --

the EEG. The EEG itself tends to obscure the EP such that it is usually impossible

9
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for the eye to discern. The evoked potential can be a complicated series of peaks,
however, a rather simple response is obtained for visual stimuli. An appropriate
checkerboard pattern stimulus produces a large amplitude response (Eason 1970). It is
that response which will be examined here. This lower checkerboard stimulus
produces a response with a positive peak approximately 85 msec after the stimulus, a
negative valley approximately 100 msec after the stimulus and a positive peak with a
185 msec latency. The total duration of the signal is approximately 300 msec. The
peak amplitudes and latencies of these components vary, however, from one response
to the next (Brazier 1964). Shown in Figure 1 is the average of 100 responses with all
peaks labeled. Each data record contains 375 points which were obtained at a

sampling frequency of 250 Hz. The stimulus was presented at sampling point 125.

During EP data collection, the subjects were seated comfortably in a
soundproofed and electromagnetically shielded booth. The booth was dimly lit with
direct current lamps to eliminate 60 cycle interference within the booth. The subjects
viewed a CONRAC video monitor from a distance of 1.5 m. The video display
subtended ll.5°(horizontal) by 8.5°(vertica1) of visual angle. The experiment timing
was controlled by a microprocessor system which triggered the analog-to-digital (A/D)
conversion and the stimulus presentation. A Grass pattern generator produced
checkerboard patterns with check size 18 min (256 checks in a full display) which
appeared on the CONRAC monitor. The stimulus parameters were chosen in an
attempt to elicit maximal amplitudes in the average EP’s (Eason 1970). Prior to the
experiment, the intensity of the visual display was measured and adjusted to 6 ft -
lamberts for both the stimulus on and blank screens. This was to ensure that no flash

response would contaminate the pattern response due to changes in the intensity.



11

Beckman Ag/AgCl EEG electrodes were applied with conductive paste to scalp
locations Pz and Cz according to the International Federation "10-20" system (Jasper
1958), of which the Pz data will be examined here. Monopolar recordings were made
at each electrode with reference to electrically linked mastoids. The forehead was
used to ground the subject. An eye channel (EOG) was included to monitor eye blink
artifact. Electrode impedances were measured before the experiment and were found

to be below 10 k1 (McGillem 1985).

It has been previously assumed that the EEG is uncorrelated from one
response to the next. This assumption is necessary for the proper functioning of the
LMS algorithm. If some correlation did exist then the algorithm would find it and the
evoked potential estimate would be distorted. Time domain techniques were used to
estimate the average autocorrelation function of the EEG. As seen in Figure 2(a), the
EEG has a variance or noise power of about 40. Figure 3(a) shows the FFT of the
windowed average autocorrelation function estimate. This is an estimate of the

average power spectral density of the EEG.

It is only possible to obtain quantitative measures of the performance of a
filter if the desired output is exactly known. If that signal is defined, the filter output
can be compared to the ideal output and statistics can be collected. For this research
the evoked potential was simulated with a series of raised cosines with random peaks
and latencies. This ‘method of simulation is not physiologically accurate but does

provide a relatively simple and clean signal for analysis. Generation was done

utilizing a program developed by Aunon and McGillem (McGillem 1985) for their

investigations into the visual evoked potential. The peaks and latencies have a zero-
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mean unit-variance Gaussian distribution centered around entered values for mean and
variance. The means and variances used to simulate the evoked potential were
estimated from latency-corrected average (McGillem 1985). These values are shown in
Table | and the values computed from the generated signals are shown in Table 2. A

few typical simulated responses are shown in Figure 4.

While visually this appears to approximate the form of the average signal
~ shown in Figure 1, it is also important that they share similar autocorrelation functions
as well as power spectral densities. To assure this, time-domain techniques were used
to estimate the average autocorrelation function of both the simulated EP and the
actual averaged EP. The results are shown in Figure 2(b). The FFT was used to
achieve the average power spectral densities of these two signals and can be seen in
Figure 3(b). It should be noted that since the signals invoived are nonstationary, these
estimates pertain to an average signal. The actual EP can be seen to have a slightly
different magnitude in its power spectrum than that in the simulated EP. The
simulated EP has a power spectrum that overlaps completely the frequency range of
the actual EP spectrum although differences exist in amplitude. Both the actual and
simulated EP cover a similar range of frequencies to those in the EEG. The removal
of noise that overlaps in frequencies with the desired signal is one of the difficulties

the filter must attempt to overcome.

For testing purposes, the simulated EP was added to the 125 points of
prestimulus EEG that is at the beginning of each data record. Having actual EEG as
the noise for the simulation was considered to present a more accurate representation

of the actual situation rather than using a generated noise such as white noise. The
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drawback to this decision is that only 125 points of noise were available. This means
that the simulated EP must have a shorter duration than the actual signal in order to
have proportionate durations of noise before and after the signal is present. These

noise portions are essential since the filter will be noncausal. When generating the

first signal output point, one-half of the weights will be on prestimulus EEG and

one-half will be on the signal. Because of this, at least one-half the maximum
number of filter weights of EEG data points must be present before the simulated EP
begins. For the data generated here, the earliest simulated EP begins at point 31, but
the average starting point is approximately 33. The maximum filter length tested was

65 due to these same data constrictions.
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TABLE 1

Latency Corrected Averaging Values Used for Simulating the EP.

Latency .
Peak | Latency(ms) Amplitude( V)

St.Dev.(ms)

1 74.14 7.41 6.28

2 111.60 6.65 -13.07

3 146.87 8.99 3.11

4 170.00 7.81 -2.22

5 202.95 11.32 8.42
TABLE 2

Computed Mean and Variance Values from Simulated EP.

Latency .
Peak | Latency(ms) Amplitude( z V)
St.Dev.(ms)
1 75.06 6.94 6.45
2 111.52 6.28 -13.16
3 145.50 9.07 3.20
4 169.55 6.78 -2.34
5 202.33 10.37 8.59




Figure 1. Average of 100 Human Visual Evoked Potential Responses Collected at
Electrode Pz (Lower Checkerboard Stimulus).
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(a) EEG

(b) Averaged Human EP (—) vs.
Averaged Simulated EP (---)

Figﬁre 2. (a) Estimate of the Autocorrelation Function of the EEG from 125 Points of
Prestimulus Data, (b) Estimate of the Autocorrelation Function of the
Averaged Human EP and the Averaged Simulated EP.
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Figure 3. (a) Estimate of the Power Spectral Density of the EEG from the

Autogorrelation Function of Figure 2a, (b) Estimate of the Power Spectral
Density of the Averaged Human EP and the Average Simulated EP from the
Autocorrelation Function of Figure 2b.
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Figure 4. Examples of the First Five Simulated EP Responses.



20

The mean square error is a quadratic function of the weights. For a two-
weight case, plotting the MSE as a function of the weights would produce a three-
dimensional parabola. The minimum MSE would be the bottom of the "bowl" and
steepest descent gradient search techniques, from which the LMS is derived, attempt
to find this bottom. As the weights converge, the gradient estimate directs the weights
down the bowl toward a zero value for the gradient. At that point the weights reach
their optimum value and mean square error is minimized. For the highly
nonstationary case, the optimum weight values change, causing the shape of the bowl
to change as well as move around in the error space. It is desirable to have the
algorithm track close to the bottom of the bowl as it moves. In this way, the LMS
could stay close to the optimum weights in a way the fixed Wiener filter cannot. For
nonstationary inputs, the Wiener filter still attempts to provide an optimum solution.

Estimates of R and P can be made for nonstationary data. Computing

-1
W*=R P 9

where the * indicates the optimal value, then yields the optimum filter impulse
response. For the EP+EEG, this solution is a bandpass filter and an estimate of the
Wiener filter impulse response using R and P estimated from the averaged EP of
Figure 1 and 100 records of prestimulus EEG is shown in Figure 6(a). The filter sees
the signal as moving around within a band of frequencies and decides that the best it
can do is to pass that band as seen in Figure 6(b). Unfortunately, as already shown,
the frequencies of the EP overlap those of the EEG and a great deal of noise would

still make it through the filter.
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Figure 5. Adaptive Linear Combiner Structure.
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Figure 6. (a) Optimal Wiener Filter Impulse Response Computed from Estimates of R
and P, (b) Frequency Domain Representation of the Wiener Filter Estimate.



CHAPTER V

WEIGHT DETERIORATION

The adaptive filter iteratively reaches an optimum set of weights by
estimating the gradient and following it down the error surface toward a solution.

Steepest descent methods of gradient estimation define the error surface as

¢= Ele,]. (10)

The LMS algorithm estimates this value as

. an

Recalling the definition of the gradient (Widrow 1985),

( ae:/awo) (aek/awo)

A : = 2¢ : = -2 X, . (12)

( 35:/3WL) (36, /8w )
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Substitution yields a noisy gradient estimate of the form

¥=-2¢X,, (13)

and a corresponding weight update equation of

Wk+1=Wk+ 2peka (14)

where u is the convergence constant.

A simple case would be an input that is signal plus noise and a desired that
is another instance of the signal such that the signals in the two channels are
correlated and noise exists only in the input channel. For simplicity, assume that the

noise is white noise with a power denoted by ¢ .

If the system is running as desired, after some time the weights will
converge to an optimum value called W* . At this point let the two signals be turned

off. The weight behavior can be traced as follows:

W =W, +2peX . (15)

Examine the expected value of these weights:

E[W, ]=E[W,_]+2uE[ ¢X,], (16)

but using (4)
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E[ W E[W,]+2p E[(d,-v,)X,] (17a)

k+1] =

=E[W, ]+2p E[d X -y X,]. (17b)
As stated, the desired channel signal is now zero which allows the above equation to

be written as

E[ W E[W,]-2sE[y,X,] (18a)

k+l] =

T
=E[W,_1-2p E[X, X W] (18b)

Assume that the weights and the input are uncorrelated.

T
E[W, 1=E[W,]-24E[X,X, ]E[W,] (19)

T
But E[ X, X, ] is the autocorrelation matrix R . Substituting and regrouping yields:

E[W,,]=(1-24R)E[W,], 20)

and extending this another point gives

E{W,,1=(1-2sR)E[W, ]=(I-24R) E[W,]. 1)

In general,

E[W, 1=(I-24R) E[W,]. (22)

Assume the time instant k is the last appearance of the signal before it is

turned off. If the system has converged, then at k:
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W, = w* |

and for samples beyond that occurring at k,

E[W, 1=W*I-2uR) ,

where the p subscript on the weight vector indicates the optimal set of weights as
pertaining to the previous system when the signal was present. Suppose the system
had just one weight. Recalling that R is the autocorrelation matrix of the input and

the input is white noise then

E[w,,]=w*l-2s9) . (25)

This shows an exponential decay of the weight toward zero. The rate of that decay is
dependent on the power in the noise and the convergence constant. If both numbers
are << 1, the weights will deteriorate very slowly. As either the noise power or u
increases, the decay rate increases. An example of the weight trace behavior for a
two weight case is shown in Figure 7. In this example, the white noise has a power of
0.01 and x is 0.05. The signal to be detected is turned off at point sample 600 and
turned back on at sample point 1100. When the signal disappears, the weights head
toward a value of zero and must reconverge when the signal reappears. Both weights

were initially zero for this test.

Does this apply to the evoked potential? When the EP is not present, the
desired channel does contain a signal, the EEG. Now assuming that the EEG in the

desired is uncorrelated with the EEG in the input produces the following. Rewriting
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equation (11)

T
W, =W, +2sX (dk - X W) (262)

T
=W, +2ud, X, -2sX X W . (26b)

But taking the expected value causes the 2 ud X term to become zero and the results
are the same. This says that learning is lost for those periods between stimulus
response. If those periods were considered by the algorithm to not exist then the filter

would have better retention of the learning.
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Figure 7. Weight Trace Behavior for Two-Weight Case. Sinusoid in White Noise for
600 Points and Disappearance of Sinusoid for 500 Points. Repeat Cycle.


















