Decoupling the Biomechanics of Locomotion and the Direction of Spatial Updating During Blind-walking Tasks

Natalie L. Anderson
University of Dayton, stander@udayton.edu

Adam Barnas
University of Dayton, stander@udayton.edu

Ryan N. Fuentes
University of Dayton, stander@udayton.edu

Kevin Longacre
University of Dayton, stander@udayton.edu

Natalya N. Lynn
University of Dayton, stander@udayton.edu

See next page for additional authors

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Recommended Citation

Anderson, Natalie L.; Barnas, Adam; Fuentes, Ryan N.; Longacre, Kevin; Lynn, Natalya N.; Peters, Katherine Y.; Schlater, Nicole A.; Schwob, Jeremy T.; and Sitz, Adam D., "Decoupling the Biomechanics of Locomotion and the Direction of Spatial Updating During Blind-walking Tasks" (2012). *Stander Symposium Posters*. Book 23.
http://ecommons.udayton.edu/stander_posters/23
Authors
Natalie L. Anderson, Adam Barnas, Ryan N. Fuentes, Kevin Longacre, Natalya N. Lynn, Katherine Y. Peters, Nicole A. Schlater, Jeremy T. Schwob, and Adam D. Sitz

This book is available at eCommons: http://ecommons.udayton.edu/stander_posters/23
Decoupling the Biomechanics of Locomotion and the Direction of Spatial Updating During Blind-walking Tasks

Adam J. Barnas, Katherine Y. Peters, & Jeremy T. Schwob
Advisor: Benjamin R. Kunz, Ph. D.

Introduction

- Does the direction of locomotion affect spatial updating?
- Do the biomechanics of locomotion influence the accuracy of spatial updating during open-loop walking?
- Spatial updating, or the process of keeping track of locations of objects relative to one’s spatial position while moving, is critical to a variety of navigation tasks.
- Although updating is likely to occur automatically during sighted walking, walking without vision (open-loop walking) requires imagined updating of the spatial relationships that change concurrently with movement.
- Dynamic spatial updating likely underlies accurate performance when blind-walking to previously seen targets (Reser, Ashmead, Talor, & Youngquist, 1990).
- Studies of imagined walking suggest that the biomechanical information from locomotion influences the accuracy of spatial updating during blind-walking (Kunz, et al., 2009).
- Although less common, backward blind-walking is nearly as accurate as forward blind-walking (Paquet, Rainville, Lajoie, & Tremblay, 2007).
- We investigated the role of biomechanical information in spatial updating by manipulating the biomechanics of locomotion and the direction of spatial updating during 3 blind-walking experiments.

General Method

- View a target, create a mental image of the target in the surrounding environment, and walk forward or backward without vision to the target.
- Forward and backward blind-walking to targets on floor
 - 9 trials to 3, 4.5 & 6 meters for each walking direction
- Experiment 1: Walking direction consistent with direction of spatial updating
- Experiment 2: Removing spatial updating component from backward walking
- Experiment 3: Decoupling walking direction and direction of spatial updating during backward walking

Experiment 1

- Forward walking with forward spatial updating
- Backward walking with backward spatial updating
- No effect of walking direction
- A significant difference in meters walked between target distances
- Distance walked increased with target distance
- Accurate walking to target distances in both walking directions

Experiment 2

- Forward walking with spatial updating
- Backward walking without spatial updating; distance matching
- No effect of walking direction
- A significant difference in meters walked between target distances
- Distance walked increased with target distance
- Significantly undershot 3m and 4.5m

Experiment 3

- Forward walking with spatial updating
- Backward walking with imaged forward walking and consistent forward spatial updating
- No effect of walking direction
- A significant difference in meters walked between target distances
- Distance walked increased with target distance

Results

- Backward Walking Comparison
 - No significant main effect of Experiment on distance walked in the backward walking conditions
 - Compared to Experiment 1, distance walked in Experiment 3 was significantly less to the 3 m target (p = .002) and to the 4.5 m target (p = .026)
 - No significant differences between Experiments 1 and 2 or Experiments 2 and 3
- Forward Walking Comparison
 - No significant main effect of Experiment on distance walked in the forward walking conditions
 - Across all three experiments, there was no significant difference in distance walked between forward and backward blind walking.
 - For backward blind walking, walking distance was the most accurate in Experiment 1 (consistent direction of locomotion and spatial updating) and the least accurate in Experiment 3 (inconsistent direction of locomotion and spatial updating), suggesting that the biomechanical information from walking direction influences the accuracy of spatial updating.
 - The task directions for the backward walking conditions may have affected the participants’ abilities to accurately spatially update position while walking during the forward walking conditions.

Conclusion and Discussion

Acknowledgements

Thanks to Natalie Anderson, Ryan Fuentes, Kevin Longacre, Natalya Lynn, Nicole Schleier, and Adam Sitz for their assistance in conducting this research.

References