Enriched Topology and Asymmetry

Stephen Rodabaugh
Youngstown State University, rodabaug@math.ysu.edu

Jeffrey T. Denniston
Kent State University, jdennist@kent.edu

Austin Melton
Kent State University, amelton@kent.edu

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf
Part of the Geometry and Topology Commons, and the Special Functions Commons

eCommons Citation
http://ecommons.udayton.edu/topology_conf/55

This Topology + Asymmetric Structures is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
ENRICHED TOPOLOGY AND ASYMMETRY

Jeffrey T. Denniston, Austin Melton, Stephen E. Rodabaugh*

Department of Mathematical Sciences
Kent State University, Kent, OH, USA, 44242
jdennist@kent.edu

Departments of Computer Science and Mathematical Sciences
Kent State University, Kent, OH, USA, 44242
amelton@kent.edu

Institute for Applied Topology and Topological Structures
Youngstown State University, Youngstown, OH, USA 44555-3347
rodabaug@math.ysu.edu, serodabaugh@ysu.edu

*Presenter

32th Summer Topology Conference, 26–30 June 2017
Contents

Motivation for Asymmetry

Order-Theoretics: PO-Groupoids, IIA Operators (Involution)

Sets Enriched by PO-Monoids

Many-Valued Enriched Topological Systems & Their Extent Spaces

Crisp/Many-Valued Specialization Preorders of Many-Valued Spaces

Antisymmetry & \(L-T_0 \) Many-Valued Topological Spaces

Symmetry & \(L-T_1(1) / L-T_1(2) \) Separation in Many-Valued Topology

== =========

Foundations & Applications of Computational Topology & Information Processing

09–12 October 2018, Youngstown, Ohio
Motivations for Asymmetry

First Motivation: Quasimetric Spaces

Consider possible conditions for \((X, d)\), where \(d : X \times X \to \mathbb{R}\):

- **(M1)** \(\forall x, y \in X, \ d(x, y) \geq 0\) (non-negativity)
- **(M2)** \(\forall x, y \in X, \ [d(x, y) > 0 \text{ or } d(y, x) > 0] \iff x \neq y\) (weak pos. definiteness)
 - **(M2a)** \(\forall x, y \in X, \ d(x, y) = 0\) if \(x = y\) (zero-distance on diagonal)
 - **(M2b)** \(\forall x, y \in X, \ [d(x, y) > 0 \text{ and } d(y, x) > 0] \iff x \neq y\) (strong pos. def.)
- **(M3)** \(\forall x, y \in X, \ d(x, y) = d(y, x)\) (symmetry)
- **(M4)** \(\forall x, y, z \in X, \ d(x, z) \leq d(x, y) + d(y, z)\)

Note: \(M2b \Rightarrow M2, \ M3 \Rightarrow (M2 \iff M2b), \ M1 \Rightarrow (M2 \Rightarrow M2a, \ M2b \Rightarrow M2a), \ M2a \iff s(x, y) = 1 - d(x, y)\) reflexive

Defn. \((X, d)\) is: metric space if \(M1, M2, M3, M4\); pseudometric space if \(M1, M2a, M3, M4\) quasimetric space if \(M1, M2b, M4\) hemimetric space if \(M1, M2a, M4\)
Enriched Topology and Asymmetry

For hemimetric space \((X, d)\), have topology \(T_d\) generated by \(\varepsilon\)-balls. Then for hemimetric \(d\), \((X, T_d)\) is: \(T_0 \iff M2\); \(T_1 \iff M2b\); \(T_2\) if \(M2\) and \(M3\).

Second Motivation: Specialization preorders. Let \((X, T)\) be topological space; put

\[x \leq_T y \iff y \in \overline{\{x\}} \]

This (or dual) is *specialization* preorder. It is antisymmetric iff \((X, T)\) is \(T_0\); it is antisymmetric and symmetric (and hence equality \(=\)) iff \((X, T)\) is \(T_1\).

Working with sober, non-\(T_1\) spaces means working with asymmetric specialization preorders.

Defn. Topological space \((X, T)\) *asymmetric* if specialization order not symmetric.

In practice, asymmetry means \(T_0\) but not \(T_1\) spaces.
Order-Theoretics: PO-Groupoids, IIA Operators/Involution

Groupoid/magma: (X, \otimes), $\otimes: X \times X \rightarrow X$ ("flat") *semitensor*

unital: (X, \otimes, e), two-sided identity e

monoid: (X, \otimes, e) unital semigroup

semiquantale: (L, \leq, \otimes) with (L, \leq) complete lattice, (L, \otimes) groupoid

Po-groupoid: (L, \leq, \otimes) with (L, \leq) poset, (L, \otimes) groupoid, \otimes isotone both var.

IIA (or involutive) po-groupoid: $(L, \leq, \otimes, *)$, (L, \leq, \otimes) po-groupoid, $*: L \rightarrow L$ involutive, isotone, anti-automorphism in these senses:

 - involutive $(a^{**} = a)$, isotone $(a \leq b \Rightarrow a^* \leq b^*)$,
 - interchanges with \otimes ($(a \otimes b)^* = b^* \otimes a^*$)

left[right]-residuated po-groupoid: (L, \leq, \otimes) with $\downarrow [\uparrow]: L \times L \rightarrow L$ s.t.

 $$a \downarrow b \geq c \iff a \otimes c \leq b \quad [b \uparrow a \geq c \iff c \otimes a \leq b]$$

po-monoid: (L, \leq, \otimes) unital po-groupoid with \otimes associative
Enriched Topology and Asymmetry

complete po-groupoid: ordered semiquantale, i.e., \((L, \leq)\) complete lattice

semiframe/semilocale: \(\otimes = \wedge\) (binary), integral

complete po-semigroup: \(\otimes\) associative

quantale: \(\otimes\) distributes on both sides across arbitrary \(\vee\), \(\otimes\) assoc.

frame/locale: \(\otimes = \wedge\) (binary), integral

Semiquantale morphisms: preserve \(\vee, \otimes\)

Comment. Given \((L, \leq, \otimes)\), an IIA-operator/involution may be chosen to be \(\ast = id_L\) iff \(\otimes\) is commutative. Allowable choices of IIA-operators/involutions for \(\otimes\) roughly gauge deviation of \(\otimes\) from being commutative. Non-commutative \(\otimes\) and associated IIA-operators/involutions \(\ast\) tied to possible symmetries of \(L\)-valued specialization orders for \(L\)-topological spaces.
Example. \((L, \leq, ^\prime) \) DeMorgan algebra (complete). Construct \((S(L), \leq, \circ, *) \) by:

\[
S(L) = \{ f : L \to L \mid f \text{ preserves } \bigvee \},
\leq \text{ taken pointwise,}
\circ \text{ composition of functions,}
f^*(a) = (f^+(a'))',
\]

where \(f^+ : L \to L \) is right adjoint of \(f \) guaranteed by AFT(\(\bigvee \)) and given by

\[
f^+(b) = \bigvee_{f(a) \leq b} a.
\]

Then \((S(L), \leq, \circ, *) \) is unital, IIA quantale; and it is both non-integral and non-commutative iff \(|L| \geq 3 \).

Powerset monads and topology. Fix \(X, Y \) sets, \(L \) semiquantale, \(f : X \to Y \); have \(f_L^- : L^X \to L^Y, f_L^\leftarrow : L^X \leftarrow L^Y, f_L^\rightarrow : L^X \to L^Y \), given respectively by

\[
f_L^-(a)(y) = \bigvee_{f(x) = y} a(x), \quad f_L^\leftarrow(b) = b \circ f, \quad f_L^\rightarrow(a) = \bigwedge_{a \leq f_L^-(b)} b.
\]
Fact $f_L^\uparrow \dashv f_L^\downarrow \dashv f_L\rightarrow$

(X, τ) is L-topological space if $\tau \subset L^X$ closed under $\bigvee, \otimes, \underline{\top}$. $f : (X, \tau) \rightarrow (Y, \sigma)$ L-continuous if $\forall v \in \sigma, f_L^\downarrow(v) \in \tau$.

Fact L-Top topological construct.
Sets Enriched by PO-Monoids

Enriched category \mathcal{C} over a monoidal category $(\mathcal{M}, \otimes, I, a, \lambda, \rho)$ is class of objects with data $C0$, $C1$, and $C2$ subject to axioms D1, D2, and D3:

C0: $\forall a, b \in \mathcal{C}, \exists! \mathcal{C}(a, b) \in |\mathcal{M}|$ (existence of hom-objects)
C1: $\forall a \in \mathcal{C}, \exists id_a : I \rightarrow \mathcal{C}(a, a)$ (existence of identities)
C2: $\forall a, b, c \in \mathcal{C}, \exists ! \circ_{abc} : \mathcal{C}(b, c) \otimes \mathcal{C}(a, b) \rightarrow \mathcal{C}(a, c)$ (comp. of hom-objects)

D1: $\forall a, b, c, d \in \mathcal{C}, \big((\circ_{abd}) \circ (\circ_{bcd} \otimes 1_{\mathcal{C}(a,b)})\big) = \big((\circ_{acd}) \circ (1_{\mathcal{C}(c,d)} \otimes \circ_{abc})\big) \circ \alpha$

D2: $\forall a, b \in \mathcal{C}, \lambda = (\circ_{abb}) \circ (id_b \otimes 1_{\mathcal{C}(a,b)})$

D3: $\forall a, b \in \mathcal{C}, \rho = (\circ_{aab}) \circ (1_{\mathcal{C}(a,b)} \otimes id_a)$

Comment. Po-monoid $(L, \leq \otimes)$, taken as a preordered category, is a monoidal category in which \otimes is the categorical tensor product, I is the unit e, and the associator α and the unitors λ, ρ are all identities.
Prop. If \((L, \leq \otimes)\) is po-monoid, then set \(X\) replacing \(C\) is \(L\)-enriched category iff there is enrichment relation, or \(L\)-(valued) preorder \(P\) on \(X\) s.t.:

E0: \(P : X \times X \to L\) is a mapping (degrees of comparison/precedence)
E1: \(\forall x \in X, e \leq P(x, x)\) (reflexivity)
E2: \(\forall x, y, z \in X, P(y, z) \otimes P(x, y) \leq P(x, z)\) (transitivity)

Defn. For \((L, \leq \otimes)\) a unital po-groupoid, \((X, P)\) is an \(L\)-preordered set, or \((X, L, P)\) is a preordered set, if:

P0: \(P : X \times X \to L\) is a mapping (degrees of comparison/precedence)
P1: \(\forall x \in X, e \leq P(x, x)\) (reflexivity)
P2: \(\forall x, y, z \in X, P(x, y) \otimes P(y, z) \leq P(x, z)\) (transitivity)

Defn. Given \(\mathcal{M}\)-enriched categories \(C, D, F : C \to D\) is \(\mathcal{M}\)-enriched functor if:

F1: \(\forall a \in C, \exists! F(a) \in D\)
F2: \(\forall a, b \in C, \exists! F_{ab} \in \mathcal{M}(C(a, b), D(F(a), F(b)))\)
F3: \(\forall a \in C, F_{aa} \circ id_a = id_{F(a)}\) (in \(\mathcal{M}\))
F4: \(\forall a, b, c \in C, F_{ac} \circ (\circ_{abc}) = (\circ_{F(a)F(b)F(c)}) \circ (F_{bc} \otimes F_{ab})\) (in \(\mathcal{M}\))
Enriched Topology and Asymmetry

Prop. Let L be po-monoid. Given L-preordered sets (X, P), (Y, Q) taken as L-enriched categories, then $f : (X, P) \to (Y, Q)$ is L-enriched functor iff $f : X \to Y$ is mapping such that

$$P(x, y) \leq Q(f(x), f(y)).$$

Defn. For $(L, \leq \otimes)$ a unital po-groupoid, an L-isotone map $f : (X, P) \to (Y, Q)$ is a mapping $f : X \to Y$ such that $P(x, y) \leq Q(f(x), f(y))$.

Defn (fixed-basis). For unital po-groupoid L, the category L-$PreSet$ comprises L-preordered sets and L-isotone mappings together with the composition and identities of Set.

Theorem (fixed-basis). For each complete unital po-groupoid, the category L-$PreSet$ is a topological category over Set w.r.t. expected forgetful functor; i.e., each L-$PreSet$ is a topological construct. Hence so is $PreSet$.

Comment. Variable-basis enriched functors can be defined for enriched category theory, with corresponding variable-basis morphisms between preordered sets (X, L, P). Topologicity quite delicate; see DMR FSS 2014.
Many-Valued Enriched Topological Systems & Their Extent Spaces

Question. Suppose bitstring x precedes bitstring y to some degree α, and bitstring y satisfies predicate a to some degree β. How should bitstring x satisfy predicate a to at least some degree related to both α and β? What if conjunction of predicates is non-commutative? Potential applications in data-mining and pattern-matching.

Complete po-groupoid based topological systems. Let A, L be complete po-groupoids. An L-*topological system* (X, A, \equiv) comprises: set X, and many-valued *satisfaction relation* $\equiv : X \times A \to L$ which respectively satisfies *join, pretensor, top interchange laws*:

$$\forall x \in X, \forall \{a_\gamma\}_{\gamma \in \Gamma} \subseteq A, \quad \equiv \left(x, \bigvee_{\gamma \in \Gamma} a_\gamma \right) = \bigvee_{\gamma \in \Gamma} \equiv (x, a_\gamma),$$

$$\forall x \in X, \forall a, b \in A, \quad \equiv (x, a \otimes b) = \equiv (x, a) \otimes \equiv (x, b),$$

$$\forall x \in X, \quad \equiv (x, \top) = \top.$$

Note. $\forall x \in X, \quad \equiv (x, \bot) = \bot$; i.e., each bitstring never satisfies *false*.

ENRICHED TOPOLOGY AND ASYMMETRY

Slide 12
Extents of predicates. Let \((X, A, \models)\) be \(L\)-topological system. The \(L\)-extent operator \(ext_L : A \rightarrow L^X\) given by

\[
\text{ext}_L(a)(x) = \models (x, a)
\]

Then \(ext_L\) preserves arbitrary \(\bigvee, \bigotimes, \top\) (to \(\bigvee\)) from \(A\) to \(L^X\). So extent space

\[
(X, (\text{ext}_L)^\top (A))
\]

is \(L\)-topological space as defined above.

Notes.

1. Each object of \(L\text{-Top}\) is produced in this way, i.e., is extent space.
2. Information (Chu) systems named by the character of their extent spaces; above justifies name "\(L\)-topological systems".
PO-Ringoids. $(L, \leq, \otimes, \bigotimes)$ is *po-ringoid* means:

R1: (L, \leq, \otimes) po-groupoid with pretensor \otimes
R2: (L, \leq, \otimes) po-groupoid with multiplication \otimes
R3: *left-partial distributive law* of \otimes over \bigotimes holds:

$$a \otimes (b \otimes c) \leq (a \otimes b) \otimes (a \otimes c)$$

Idea. Want to add topological system structure or topological structure to preset; (L, \leq, \otimes) with completeness and unit undergirds order, (L, \leq, \otimes) with completeness undergirds topology; left-partial distributive law ties together.

Note. May add conditions to po-ringoids. *Groupoidal quantale*: unital complete po-ringoid $(L, \leq, \otimes, \bigotimes, e)$ with (L, \leq, \otimes, e) unital quantale and \otimes distributes partially over \bigotimes from both left and right.

Some Examples.
(1) Complete lattice $(L, \leq, \lor, \land, \bot)$ unital complete po-ringoid; if also distributive, then $(L, \leq, \land, \lor, \top)$ integral complete po-ringoid.
(2) $([0, 1], \leq, t_L, \land, 1)$ integral groupoidal quantale.
(3) $(S(L), \leq, \circ, \otimes_1, id_L), (S(L), \leq, \circ, \otimes_2, id_L)$ non-integ. groupoidal quantales^note.
Enriched Topology and Asymmetry

Enriched topological systems. Let \((L, \leq, \otimes, \otimes, e)\) be a unital complete po-ringoid and \((A, \leq, \otimes)\) be a complete po-groupoid. An *L-enriched topological system* \((X, P, A, \models)\) comprises the following:

ES1: \(L\)-preordered set \((X, P)\) using unital po-groupoid \((L, \leq, \otimes)\)

ES2: \(L\)-topological system \((X, A, \models)\), where satisfaction relation \(\models : X \times A \to L\) respectively satisfies join, *pretensor-multiplication*, top interchange laws using complete po-groupoids \((L, \leq, \otimes)\) and \((A, \leq, \otimes)\)—

\[
\forall x \in X, \forall \{a_\gamma\}_{\gamma \in \Gamma} \subseteq A, \quad \models (x, \bigvee_{\gamma \in \Gamma} a_\gamma) = \bigvee_{\gamma \in \Gamma} \models (x, a_\gamma),
\]

\[
\forall x \in X, \forall a, b \in A, \quad \models (x, a \otimes b) = \models (x, a) \otimes \models (x, b),
\]

\[
\forall x \in X, \quad \models (x, T) = T.
\]

ES3: \(P\) and \(\models\) together satisfy *compatibility/enrichment axiom*:

\[
\forall x, y \in X, \forall a \in A, \quad P(x, y) \otimes \models (y, a) \leq \models (x, a).
\]

Comment. This definition formulates programming question given above.

Examples. Later.
Enriched Topology and Asymmetry

Enriched extents of predicates. \((L, \leq, \otimes, \bigodot, e)\) unital complete po-ringoid, \((A, \leq, \otimes)\) complete po-groupoid, \((X, P, A, \rhd)\) \(L\)-enriched topological system. Put \(\text{ext}_L : (A, \leq, \otimes) \to (L, \leq, \bigodot)^X\)

\[
\text{ext}_L(a) : X \to L \quad \text{by} \quad \text{ext}_L(a)(x) = \rhd (x, a)
\]

Then \(\text{ext}_L\) preserves arbitrary \(\bigvee\), preserves \(\otimes\) of \(A\) to pointwise lifted \(\otimes\) of \(L\), preserves \(\top^A\) to \(\top_L\). **BUT** ES3 above implies new property for \(\text{ext}_L\):

\[
\forall a \in A, \ \forall x, y \in X, \ P(x, y) \otimes \text{ext}_L(a)(y) \leq \text{ext}_L(a)(x)
\]

Have **extent space** \((X, (\text{ext}_L) \rhd (A))\), where \((\text{ext}_L) \rhd (A) \subseteq L^X\) satisfies: closed under arbitrary \(\bigvee\), closed under \(\otimes\) (lifted pointwise), contains \(\top_L\), and satisfies this **compatibility/enrichment condition**:

\[
\forall u \in (\text{ext}_L) \rhd (A), \ \forall x, y \in X, \ P(x, y) \otimes u(y) \leq u(x)
\]
Enriched Topology and Asymmetry

Enriched Topology (spaces). Let \((L, \leq, \otimes, \oplus, e)\) be unital complete po-ringoid. Then \((X, P, \tau)\) is \(L\)-enriched/preordered topological space if \((X, P)\) is \((L, \leq, \otimes)\)-preordered set and \(\tau \subset L^X\) such that \(\tau\) is:

- SP1: closed under arbitrary \(\bigvee\)
- SP2: closed under \(\otimes\)
- SP3: contains \(T_L\)
- SP4: \(\forall u \in \tau, \forall x, y \in X, P(x, y) \otimes u(y) \leq u(x)\) (compatibility/enrichment)

Enriched Topology (fixed-basis). Let \((L, \leq, \otimes, \oplus, e)\) be unital complete left-residuated po-ringoid. Then \(L\)-\(\text{EnrTop}\) comprises all spaces \((X, P, \tau)\) from above together with all morphisms of the form \(f : (X, P, \tau) \rightarrow (Y, Q, \sigma)\) such that \(f : (X, P) \rightarrow (Y, Q)\) in \(L\)-\(\text{PreSet}\) and \(f : (X, \tau) \rightarrow (Y, \sigma)\) in \(L\)-\(\text{Top}\).

Theorem. Let \((L, \leq, \otimes, \oplus, e)\) be unital complete left-residuated po-ringoid. Then \(L\)-\(\text{EnrTop}\) is topological over each of \(L\)-\(\text{PreSet}\) and \(\text{Set}\) w.r.t. the expected forgetful functors.

Examples. Later.
Crisp/Many-Valued Specialization Preorders of Many-Valued Spaces

Recall. For \((X, \mathcal{T})\) be topological space: \(x \leq_T y \iff y \in \overline{\{x\}}\). Equivalent to say:

\[x \leq_T y \iff \forall U \in \mathcal{T}, y \in U \Rightarrow x \in U \]

Defn: \(L\)-Specialization Order. Let \(L\) be complete po-groupoid and \((X, \tau)\) be \(L\)-topological space. Put: \(x \leq_\tau y \iff \forall u \in \tau, u(y) \leq u(x)\). Also dual order.

Defn: \(L\)-Valued Specialization Orders. Let \(L\) be right-residuated complete po-monoid and \((X, \tau)\) be \(L\)-topological space. Put \(P_\tau : X \times X \to L\) by

\[P_\tau(x, y) = \bigwedge_{u \in \tau} (u(x) \lor u(y)) \]

If \(L\) left-residuated complete po-monoid, then put "dual" \(Q_\tau : X \times X \to L\) by

\[Q_\tau(x, y) = \bigwedge_{u \in \tau} (u(x) \land u(y)) \]

Note. \(\leq_\tau\) and dual are (crisp) preorders; \(P_\tau\) and \(Q_\tau\) are \(L\)-preorders.

Theorem. Crisp orders induced by \(L\)-valued specialization orders are precisely the crisp \(L\)-specialization orders.
Enriched Topology and Asymmetry

Examples (spaces to enriched spaces to enriched systems). Let \((L, \leq, \otimes, \ltimes, e)\) be a complete right-residuated po-ringoid such that \((L, \leq, \otimes)\) is a monoid; let \((X, \tau)\) be \((L, \leq, \otimes)\)-topological space.

1. Consider \(L\)-valued specialization order \(P_\tau : X \times X \rightarrow (L, \leq, \otimes)\). Then \(P_\tau\) is compatible with \((X, \tau)\), i.e., \((X, P_\tau, \tau)\) is enriched \(L\)-topological space.
2. Continuing from (1), put \(\models_\tau : X \times \tau \rightarrow L\) by
 \[
 \models_\tau (x, u) = u(x)
 \]
 Then \((X, P_\tau, \tau, \models_\tau)\) is enriched \((L, \leq, \otimes)\)-topological system.
3. "Dualize" (1,2) using \(Q_\tau\) if \(L\) left-residuated equipped with right partial distrib. law, order of pretensorands in compatibility axioms reversed.

Examples. Let \((L, \leq, \otimes, \ltimes, e)\) be unital complete po-ringoid, \((A, \leq, \otimes)\) be complete po-groupoid, \((X, P, A, \models)\) be enriched \(L\)-topological system. Then \((X, P, \text{ext}_L^\tau(A))\) is enriched \(L\)-topological space using satisfaction relation from (2) above.
Examples (systems to enriched systems). Let \((L, \leq, \otimes, \boxtimes, e)\) be complete right-residuated po-ringoid such that \((L, \leq, \otimes)\) monoid, \((A, \leq, \otimes)\) complete po-groupoid; let \((X, A, \models)\) be \(L\)-topological system. Then \((X, P_{\text{ext}_{L}^{-}}(A), A, \models)\) is enriched \(L\)-topological system. "Dualize" using \(Q_{\text{ext}_{L}^{-}}(A)\) and related concepts and satisfacton relation from (2) above.

Examples (spectra to enriched systems/spaces). Let \((L, \leq, \otimes, \boxtimes, e)\) be complete right-residuated po-ringoid such that \((L, \leq, \otimes)\) monoid, \((A, \leq, \otimes)\) complete po-groupoid. Put:

\[
Lpt(A) = \{p : A \to L \mid p \text{ preserves } \bigvee, \otimes \text{ to } \boxtimes, \top\},
\]

\[
P_{A} : Lpt(A) \times Lpt(A) \to L \text{ by } P_{A}(p, q) = \bigwedge_{a \in A} (p(a) \lor q(a)),
\]

\[
\models_{A} : Lpt(A) \times A \to L \text{ by } \models_{A}(p, a) = p(a)
\]

Then \((Lpt(A), P_{A}, A, \models_{A})\) is enriched \(L\)-topological system. For corresponding enriched \(L\)-topological extent space \((Lpt(A), P_{A}, \text{ext}_{L}^{-}(A))\), \(P_{A} = P_{\text{ext}_{L}^{-}(A)}\). "Dualize" using \(Q_{A}, Q_{\text{ext}_{L}^{-}}(A)\) and related concepts.
Examples ((bit)strings from alphabets). Let:

\[\Sigma \text{ be set with } |\Sigma| \geq 2, \text{ viewed as "alphabet"} \]

\[\Sigma^{*\omega} =: \{ \text{countable strings of letters from } \Sigma \} \]

\[\mathcal{B} =: 2^\omega = \{ \text{countably infinite strings of letters from } 2 \} \text{—complete Bool. alg. with } \otimes = \varnothing = \wedge \]

Put \(P : \Sigma^{*\omega} \times \Sigma^{*\omega} \to \mathcal{B} \) by—for \(n \in \mathbb{N} \)—

\[
P(\sigma_1, \sigma_2)(n) = \begin{cases} 1, & \text{if } \sigma_1(n), \sigma_2(n) \text{ exist and } \sigma_1(n) = \sigma_2(n) \\ 0, & \text{otherwise} \end{cases}
\]

Each \(P(\sigma_1, \sigma_2) \) is *comparison bitstring*. It follows that \((\Sigma^{*\omega}, P) \) is \(\mathcal{B} \)-preordered set.

Now for \(\alpha \in \Sigma \), put \(p^\alpha : \Sigma^{*\omega} \to \mathcal{B} \) by

\[
p^\alpha(\sigma)(n) = \begin{cases} 1, & \text{if } \sigma(n) \text{ exists and } \sigma(n) = \alpha \\ 0, & \text{otherwise} \end{cases}
\]

Each \(p^\alpha(\sigma) \) is *indicator string* and member of \(\mathcal{B}^{\Sigma^{*\omega}} \). Now put
\[Q = \langle \langle \{ p^a : a \in \Sigma \} \rangle \rangle \subset B^{\Sigma^{*\omega}}, \]

the \(B \)-topology having subbasis the indicator strings. It can be shown that \(Q \) is compatible with \(P \); hence \((\Sigma^{*\omega}, P, Q)\) is \(B \)-enriched topological space.

Finally, \((\Sigma^{*\omega}, P, Q, \models_Q)\) is \(B \)-enriched topological system, where \(\models_Q : \mathbb{X} \times Q \to L \) by

\[\models_Q (x, u) = u(x) \]

"String" spaces encountered again below w.r.t. many-valued \(T_1 \) separation.
Antisymmetry & $L-T_0$ Many-Valued Topological Spaces

Defn (antisymmetry and partial orders). Let L be a unital po-groupoid. Then $P : X \times X \rightarrow L$ on X is (L-)antisymmetric if

$$\forall x, y \in X, \ P(x, y) \geq e, \ P(y, x) \geq e \Rightarrow x = y;$$

and L-partial order is antisymmetric L-preorder; and L-Poset is full subcategory of L-PreSet comprising all L-posets.

Comment. Above definition justified in several directions: skeleton of each L-PreSet; quotients of L-presets (construction requires L-antisymmetry, IIA operators/involutions, and L-symmetry—latter below with $L-T_1$ issues); furnishes right-adjoint of each L-PreSet; generalizes classical result that Poset is monotopological construct; characterizes fundamental $L-T_0$ axiom in many-valued topology.

Theorem. For each complete unital po-groupoid L, L-Poset is monotopological over Set w.r.t. expected forgetful functor; so Poset is monotopological construct.
Enriched Topology and Asymmetry

Defn (T_0 separation). Let L be complete po-groupoid and (X, τ) be L-topological space. Then (X, τ) is $L-T_0$ if

$$\forall x, y \in X, \ x \neq y \Rightarrow \exists u \in \tau, \ u(x) \neq u(y)$$

The $L-T_0$ axiom has different formulations (e.g., injectivity of the L-Stone second comparison maps), and is well-established via representation theorems and compactification reflectors, including two successful forms of sobriety. Examples include spectra and the fuzzy real lines and unit intervals. More justification below.
Main Theorem. Assume: \(L \) complete po-groupoid, \(L \)-topological space \((X, \tau)\).

1. \(\leq_\tau \) (and dual) is antisymmetric (and po) iff \((X, \tau)\) is \(L-T_0\).

2. Further assume \(L \) right-residuated complete po-monoid. Then
\[
P_\tau : X \times X \to L \text{ is antisymmetric (and po) iff } (X, \tau) \text{ is } L-T_0.
\]

3. Further assume \(L \) left-residuated complete po-monoid. Then
\[
Q_\tau : X \times X \to L \text{ is antisymmetric (and po) iff } (X, \tau) \text{ is } L-T_0.
\]

4. For \(L \) a right[left]-residuated complete po-monoid, \(\leq_\tau \) (and dual) is antisymmetric iff \(P_\tau [Q_\tau] \) is antisymmetric. Hence for \(L \) unital quantale, \(\leq_\tau \) (and dual) is antisymmetric iff \(P_\tau \) is antisymmetric iff \(Q_\tau \) is antisymmetric.

5. For \(L \) DeMorgan frame with antitone involution \(' : L \to L \), the \(L \)-valued hemimetric \(P_\tau' : X \times X \to L \) induced by \(P_\tau \) satisfies the following positive definiteness condition—
\[
[\forall x, y \in X, P_\tau'(x, y) = P_\tau'(y, x) = \bot \iff x = y]
\]
if and only if \((X, \tau)\) is \(L-T_0\).
Notes.
(1) L-antisymmetry essentially "same as" traditional antisymmetry, so appropriate generalization.

(2) To check L-antisymmetry of P_τ, suffices to check antisymmetry of \leq_τ. But latter always included in former (for right-residuated complete po-monoid case) since $\chi^e_{\leq_\tau} \leq P_\tau$, where $\chi^e_{\leq_\tau} \equiv \chi_{\leq_\tau} \land e : X \times X \to \{\bot, e\} \subset L$.
Symmetry & $L-T_1(1) / L-T_1(2)$ Separation in Many-Valued Topology

Recall. For L unital groupoid, P is L-valued preorder on X if:

- **P0**: $P : X \times X \to L$ is mapping (degrees of precedence)
- **P1**: $\forall x \in X, \ e \leq P(x, x)$ (reflexivity)
- **P2**: $\forall x, y, z \in X, \ P(x, y) \otimes P(y, z) \leq P(x, z)$ (transitivity)

Can also consider:

- **P3**: $\forall x, y \in X, \ P(x, y) \geq e, \ P(y, x) \geq e \Rightarrow x = y$ (antisymmetry)

Defn (symmetry). Let X be set and $(L, \leq, \otimes, e, *)$ be unital IIA po-groupoid. Then P is a symmetric L-valued relation on X if P satisfies P0 and

- **P4**: $\forall x, y \in X, \ P(x, y) = P^*(y, x)$ (symmetry),

* $: L \to L$ is IIA oper./invol. ($a^{**} = a, \ a \leq b \Rightarrow a^* \leq b^*, \ (a \otimes b)^* = b^* \otimes a^*$).

Remark. If \otimes is commutative and $*$ is chosen as id_L, then P4 becomes

$\forall x, y \in X, \ P(x, y) = P(y, x)$
Note. Many-valued symmetry above central to many-valued antisymmetry capturing quotients of L-presets as L-posets and to the latter comprising the right adjoint of the former. Important justification of many-valued symmetry.

Strategy. Know antisymmetry characterizes T_0 for traditional topology, symmetry characterizes T_1 for traditional topology, and antisymmetry (crisp or many-valued) characterizes $L-T_0$ for many-valued topology. Propose to define $L-T_1$ for many-valued topology using above many-valued symmetry. Accordingly, propose to define *asymmetry* for many-valued topology as the denial of above many-valued symmetry.

Defn. For L a right-residuated complete po-monoid, an L-topological space (X, τ) or its topology τ is *asymmetric* if \leq_τ or P_τ is not symmetric.

Typically, asymmetric space is also $L-T_0$.

Standing Assumption. Until stated otherwise, L in sequel is unital IIA quantale.
ENRICHED TOPOLOGY AND ASYMMETRY

IIA induced spaces. Let (X, τ) be L-topological space. Put:

$$\tau^* = \{ u^* : u \in \tau \}, \quad T = \tau \lor \tau^*$$

Then $(X, \tau^*), (X, T)$ are L-topological spaces; and T is smallest $*$-invariant topology containing τ (so $T^* = T$).

Example. Suppose \otimes non-commutative with $* \neq id_L$; $\exists a \in L, a^* \neq a$. Put

$$\tau = \{ \bot, a, \top \}$$

for some set X. Then (X, τ) is L-topological space and $\tau \not\subseteq T$.

Lemma. Let X be set and $x, y \in X$.

1. $P_{\tau}^* : X \times X \to L$ by $P_{\tau}^*(x, y) = \bigwedge_{u \in \tau} (u^*(y) \imps u^*(x))$.

2. $P_{\tau}^*(x, y) = Q_{\tau^*}(y, x)$.

3. P_{τ} symmetric iff $P_{\tau} = Q_{\tau^*}$; Q_{τ} symmetric iff $Q_{\tau} = P_{\tau^*}$; P_{τ} symmetric iff Q_{τ} symmetric.

4. P_T symmetric iff $P_T = Q_T$ iff Q_T symmetric.
Theorem *(L-specialization vis-a-vis L-valued specialization w.r.t. symmetry).*

(1) Let P_τ be symmetric. Then:
- (a) \leq_τ symmetric;
- (b) \leq_{τ^*} coincides with \leq_τ and hence symmetric;
- (c) \leq_T coincides with \leq_τ and hence symmetric.

(2) Converse to (1)(a) fails, even when \leq_τ additionally assumed antisymmetric, i.e., (X, τ) also L-T_0.

Examples.

(1) Let $X = \{x, y\}, L = \{\bot, a, b, \top\}: \otimes = \land, \vee = \lor = \rightarrow, * = id_L$, so $P^*_\tau(y, x) = P_\tau(y, x)$. Put: $u(x) = \bot, u(y) = a; v(x) = b, v(y) = \top; o(x) = b, o(y) = a; \tau = \{\bot, u, v, o, \top\}$. Then (X, τ) is L-topological space which is L-T_0 and for which \leq_τ is both antisymmetric and symmetric (and hence trivial), and P_τ is L-antisymmetric but not L-symmetric.

(2) As in (1), but not include o. Then (X, τ) is L-topological space which is L-T_0 and for which \leq_τ is antisymmetric but not symmetric, and P_τ is L-antisymmetric but not L-symmetric.
Defn (*L*-T₁ separation axioms). Let \((X, \tau)\) be *L*-topological space.

1. Suppose *L* semiquantale. \((X, \tau)\) is *L-*T₁ in *first sense*, or *L-*T₁(1), if \(\leq_\tau\) antisymmetric and symmetric.

2. Suppose *L* unital IIA quantale. \((X, \tau)\) is *L-*T₁ in *second sense*, or *L-*T₁(2), if \(P_\tau\) antisymmetric and symmetric. So, \((X, \tau)\) is *L-*T₁(2) if \(P_\tau\) satisfies:

 P₁: \(\forall x \in X,\ P_\tau(x, x) \geq e;\)

 P₂: \(\forall x, y, z \in X,\ P_\tau(x, y) \otimes P_\tau(y, z) \leq P_\tau(x, z);\)

 P₃: \(\forall x, y \in X,\ P_\tau(x, y) \geq e,\ P_\tau(y, x) \geq e \implies x = y;\)

 P₄: \(\forall x, y \in X,\ P(x, y) = P^*(y, x).\)

Corollary. Let *L* be unital IIA quantale and \((X, \tau)\) be *L*-topological space.

1. *L-*T₁(1) implies *L-*T₀, but not conversely.
2. *L-*T₁(2) implies *L-*T₀, but not conversely.
3. *L-*T₁(2) implies *L-*T₁(1), but not conversely.

Comment. When evaluating an *L*-topological space for asymmetry, it merely suffices to determine if \(\leq_\tau\) is not symmetric; and if the space is *L-*T₀, then it suffices to determine that the space is not *L-*T₁(1).
Reconciliation with Kubiak (1995) $L-T_1$ axiom. Let L be semiquantale and (X, τ) be L-topological space.

(1) (X, τ) is $L-T_1(K)$ if:

$$\forall x, y \in X, x \neq y \Rightarrow \exists u, v \in \tau, u(y) \ngeq u(x) \text{ and } v(x) \ngeq v(y)$$

(2) Rewrite $L-T_1(K)$:

$$\forall x, y \in X, x \neq y \Rightarrow x \triangleleft \tau y \text{ and } y \triangleleft \tau x. \quad (K1)$$

(3) Rewrite $L-T_1(1)$:

$$\forall x, y \in X, x \triangleleft \tau y \Leftrightarrow y \triangleleft \tau x. \quad (K2)$$

(4) Assume $L-T_1(K)$, suppose $x \triangleleft \tau y$. Then (K1) gives $x = y$, reflexivity of \leq_τ gives $y \leq_\tau x$. So $L-T_1(1)$ holds.

(5) Assume $L-T_1(1)$, suppose $x \neq y$. Antisymmetry of \leq_τ yields $x \triangleleft \tau y$ or $y \triangleleft \tau x$. But (K2) in each case yields $x \triangleleft \tau y$ and $y \triangleleft \tau x$. By (K1), $L-T_1(K)$ holds.

(6) So $L-T_1(1) \Leftrightarrow L-T_1(K)$. Different motivations: $L-T_1(K)$ motivated by giving symmetric version of $L-T_0$; $L-T_1(1)$ motivated by symmetry of L-specialization order \leq_τ.
Spectra Related Examples. Let \(\text{SQuant}\) be category of all semiquantales and all morphisms being those maps preserving arbitrary \(\bigvee\) and \(\otimes\); and let \(\text{Squant}_\top\) be subcategory of all semiquantales and those semiquantale morphisms which also present \(\top\).

Fix semiquantale \(L\), and let \(A\) be any semiquantale. Put:

\[
Lpt(A) = \text{SQuant}_\top(A, L) = \{p : A \to L \mid p \text{ preserves } \bigvee, \otimes, \top\},
\]

\[
\Phi_L : A \to L^{Lpt(A)} \text{ by } \Phi_L(a) : Lpt(A) \to L \text{ by } \Phi_L(a)(p) = p(a).
\]

Then \(Lpt(A) = (Lpt(A), (\Phi_L)^\sim(A))\) is \(L\)-topological space, the \(L\)-spectrum of \(A\).

Defn. Let \(A\) be semiquantale.

(1) \(c \in A - \{\top\}\) is \(\otimes\)-prime if: \(\forall a, b \in A, a \otimes b \leq c \iff a \leq c \text{ or } b \leq c\). \(\Pr_{\otimes}(A)\) set of all \(\otimes\)-primes of \(A\).

(2) \(A\) has two related \((\otimes-)\)primes if \(\exists a, b \in \Pr_{\otimes}(A), a \leq b\) and \(a \neq b\).

Lemma. \(Lpt(A)\) is \(L-T_1(1)\) iff \(\forall p, q \in Lpt(A), q \leq p \iff p \leq q\) (in \(Lpt(A)\)).

Theorem. Assume \(L\) integral, \(\bot\) annihilator for \(\otimes\) in \(L, A\). Then \(L\) consistent & \(A\) has two related primes \(\Rightarrow Lpt(A)\) not \(L-T_1(1)\). "Iff" if \(L = 2\).
Enriched Topology and Asymmetry

Example. Assume L integral & consistent, \perp annihilator for \otimes in L, A, and \mathcal{J}_{cof} cofinite topology of \mathbb{R}. Then $L Pt(\mathcal{J}_{\text{cof}})$ not $L-T_1(1)$.

Examples. Let L be consistent, complete DeMorgan algebra; let $\mathbb{R}(L), \mathbb{R}_l(L), \mathbb{R}_r(L), \mathbb{I}(L), \mathbb{I}_l(L), \mathbb{I}_r(L)$ be L-fuzzy real line, L-fuzzy left-handed real line, L-fuzzy right-handed real line, L-fuzzy unit interval, L-fuzzy left-handed unit interval, L-fuzzy right-handed unit interval.

1. All are $L-T_0$.
2. $\mathbb{R}(L)$ and $\mathbb{I}(L)$ are $L-T_1(1)$; the others are not $L-T_1(1)$.
3. Recall $\mathbb{R}^*(L)$ and $\mathbb{I}^*(L)$, so-called "alternative" fuzzy real line and unit interval, are defined to be $L Pt(\mathcal{J})$, where \mathcal{J} is standard topology on \mathbb{R} and \mathbb{I}, respectively. For L a complete Boolean algebra, $\mathbb{R}^*(L)$ and $\mathbb{I}^*(L)$ are both L-sober and $L-T_1(1)$.
4. For L a complete Boolean algebra, $\mathbb{R}(L)$ and $\mathbb{I}(L)$ are both L-sober and $L-T_1(1)$. (This follows from (3)).

Examples. Recall \mathcal{B}-enriched topological spaces $(\Sigma^{*\omega}, P, Q)$ described above.

1. P is reflexive, transitive, compatible, antisymmetric, symmetric.
2. \mathcal{B}-valued specialization order $P_Q = P$. Hence $(\Sigma^{*\omega}, P, Q)$ is $L-T_1(2)$.
Examples (behavior w.r.t. $M_L \rightarrow G_\chi$). For $L-T_0$ and $L-T_1(1)$ issues, L is semiquantale; for $L-T_1(2)$ issues, L is integral IIA quantale.

(1) $(X, T) \ T_0$ iff $G_\chi(X, T) \ L-T_0$; $(X, T) \ T_1$ iff $G_\chi(X, T) \ L-T_1(1)$.
(2) M_L reflects $T_0 [T_1]$ to $L-T_0 [L-T_1(1)]$.
(3) G_χ preserves T_1 to $L-T_1(2)$, and reflects $L-T_1(2)$ to T_1. Hence G_χ preserves asymmetry.
(4) M_L reflects T_1 to $L-T_1(2)$, and hence preserves L-asymmetry.

Examples (behavior w.r.t. $\omega_L \rightarrow \iota_L$). Generally, L is semiquantale.
(1) Let $(X, \tau) \in |L-\text{Top}|$. Then (X, τ) is $L-T_1(1)$ iff $\iota_L(X, \tau)$ is T_1. Hence ι_L reflects and preserves L-asymmetry.
(2) Let $(X, \mathcal{T}) \in |\text{Top}|$. Then (X, \mathcal{T}) is T_1 implies $\omega_L(X, \mathcal{T})$ is $L-T_1(1)$, in which case ω_L reflects L-asymmetry; and the converse holds if L is completely distributive ($\otimes = \wedge$), in which case ω_L preserves asymmetry.
(3) Continuing (2), if L admits an endomorphism other than the identity, then for (X, \mathcal{T}) being T_1, $\omega_L(X, \mathcal{T})$ is both $L-T_1(1)$ and not L-sober.
Other Separation Issues.

(1) Strong $L-T_2$ (Höhle) implies weak $L-T_2$ (Kubiak) implies $L-T_1(1)$. But neither Hausdorff axiom implies L-sober: for any L complete DeMorgan frame which is non Boolean, $\mathbb{R}(L)$ and $\mathbb{I}(L)$ are strong $L-T_2$ but not L-sober.

(2) For L semiquantale, have: τ_L-Hausdorff implies $L-T_1(1)$ implies $L-T_0$, and τ_L-Hausdorff implies τ_L-sober implies $L-T_0$, and $L-T_1(1)$ and τ_L-sober unrelated. For L completely distributive DeMorgan algebra, $\mathbb{R}(L)$ and $\mathbb{I}(L)$ are τ_L-Hausdorff and τ_L-sober and $L-T_1(1)$; but if L is also non-Boolean, $\mathbb{R}(L)$ and $\mathbb{I}(L)$ are not L-sober. So τ_L-Hausdorff \nRightarrow L-sobriety.
Example (non-commutative conjunctions in programming / web searches).

Two numerical variables x, y related to website.

(1) y counts how many times website has been visited.
(2) Whenever y is used in expression, website is accessed before value in y is read, so y always updated.
(3) Each time y is read, its value increases by 1.
(4) Predicates related to website take on traditional truth values T or F. The conjunction of predicates φ, ψ written $\varphi \land \psi$, which is T if and only if each of φ, ψ is T.
(5) Website not accessed when conjunctions of associated predicates are formed.
(6) Conjunction $\varphi \land \psi$ read left-to-right, first φ, then ψ.
(7) Assume:

 current value of x is 9, current value of y is 8

 Consider predicates $P : [x = y]$, $Q : [y \geq 10]$.
(8) Truth value of $P \sqcap Q$ is T: reading P first updates y to $y = 9$; reading Q second updates y yet again, giving $y = 10$; so each of P, Q is T.

(9) Truth value of $Q \sqcap P$ is F: reading Q first updates y to $y = 9$; reading P second updates y yet again, giving $y = 10$; so each of P, Q is F.

(10) Note also that $P \sqcup Q$ is T, while $Q \sqcup P$ is F.

(11) Note if Q is replaced by \hat{Q}: $[y \geq 9]$, then:

$P \sqcap \hat{Q}$ is T, \hspace{1cm} $\hat{Q} \sqcap P$ is F

$P \sqcup \hat{Q}$ is T, \hspace{1cm} $\hat{Q} \sqcup P$ is T
References

ENRICHED TOPOLOGY AND ASYMMETRY

